Subscribe to RSS
DOI: 10.1055/s-2002-31902
LPDE-Catalyzed Intramolecular Cyclization of Arylimines: A Facile Synthesis of Tetrahydrochromanoquinolines
Publication History
Publication Date:
07 February 2007 (online)
Abstract
Lithium perchlorate in diethyl ether (LPDE) is found to catalyze an intrarmolecular cyclization of aldimines derived from aromatic amines and O-prenyl derivatives of salicylaldehydes to afford the corresponding tetrahydrochromano[4,3-b]quinoline derivatives in excellent yields with moderate diastereoselectivity.
Key words
LPDE - aldimines - intramolecular cyclization - acridines
-
1a
Carruthers W. Cycloaddition Reactions in Organic Synthesis Pergamon; Oxford: 1990. -
1b
Oppolzer W. In Comprehensive Organic Synthesis Vol. 5:Paquette LA. Pergamon; Oxford: 1991. p.315 -
1c
Kappe CO.Murphree SS.Padwa A. Tetrahderon 1997, 53: 14179 -
1d
Pindur U.Lutz G.Otto C. Chem. Rev. 1993, 93: 741 -
2a
Povarov LS. Russ. Chem. Rev. 1967, 36: 656 -
2b
Weinreb SM. Comprehensive Organic Synthesis Vol. 5:Trost BM.Flemming I. Pergamon; Oxford: 1991. p.401-449 -
2c
Boger DL.Weinreb SM. Hetero-Diels-Alder Methodology in Organic Synthesis Academic Press; San Diego: 1987. Chap. 2 and 9. -
3a
Yamada N.Kadowaki S.Takahashi K.Umezu K. Biochem. Pharmacol. 1992, 44: 1211 -
3b
Johnson JV.Rauckman S.Baccanari PD.Roth B. J. Med. Chem. 1989, 32: 1942 -
4a
Kiselyov AS.Smith L.Armstrong RW. Tetrahedron 1998, 54: 5089 -
4b
Ma Y.Qian C.Xie M.Sun J. J. Org. Chem. 1999, 64: 6462 -
4c
Kiselyov AS.Smith LS.Virgilio A.Armstrong RW. Tetrahedron 1998, 54: 7987 -
5a
Temme O.Laschat S. J. Chem. Soc. Perkin Trans 1 1995, 125 -
5b
Schulte JL.Laschat S.Kotila S.Hecht J.Frohlich R.Wibbeling B. Heterocycles 1996, 43: 2713 -
6a
Laschat S.Lauterwein J. J. Org. Chem. 1993, 58: 2856 -
6b
Hadden M.Stevenson PJ. Tetrahedron Lett. 1999, 40: 1215 -
6c
Babu G.Perumal PT. Tetrahedron Lett. 1998, 39: 3225 - 7
Kouznetsov V.Palma A.Rozo W.Stashenko E.Bahsas A.Amaro-Luis J. Tetrahedron Lett. 2000, 41: 6985 -
8a
Jones W.Kiselyov AS. Tetrahedron Lett. 2000, 41: 2309 -
8b
Zhang D.Kiselyov AS. Synlett 2001, 1173 - 9
Heydari A.Larijani H.Emami J.Karami B. Tetrahedron Lett. 2000, 41: 2471 - 10
Sankara Raman S.Nesakumar JE. Eur. J. Org. Chem. 2000, 2003 -
11a
Yadav JS.Reddy BVS.Murthy CVSR.Kumar GM.Madan C. Synthesis 2001, 783 -
11b
Yadav JS.Reddy BVS.Srinivas R.Madhuri C.Ramalingam T. Synlett 2001, 240
References
Experimental procedure: Method I: A mixture of prenyl derivative of salicylaldimine (5 mmol) and 5 M lithium perchlorate in diethyl ether (5 mL) was stirred at ambient temperature for an appropriate time (Table). After completion of the reaction, as indicated by TLC, the reaction mixture was quenched with water (15 mL) and extracted with diethyl ether (2 × 15 mL). The combined organic layers were dried over anhydrous Na2SO4, concentrated in vacuo and purified by column chromatography on silica gel (Merck, 100-200 mesh ethyl acetate-hexane, 0.5:9.5) to afford pure product.
Method II: A mixture of prenyl derivative of salicylaldimine (5 mmol) and Amberlyst 15 (1.5 g) in acetonitrile (10 mL) was stirred at ambient temperature for an appropriate time (Table). After completion of the reaction, as indicated by TLC, the reaction mixture was filtered and washed with ethyl acetate (2 × 10 mL) The combined organic layers were dried over anhydrous Na2SO4, concentrated in vacuo and purified by column chromatography on silica gel (Merck, 100-200 mesh ethyl acetate-hexane, 0.5:9.5) to afford pure product. The ion-exchange resin Amberlyst 15 was washed with methanol and reused in subsequent reaction without apparent loss of activity.
Spectral data for product 2b: Solid, mp146-147 °C; 1H NMR (CDCl3): δ 1.27 (s, 3 H), 1.50 (s, 3 H), 1.98 (dt, 1 H, J = 10.8, 3.5 Hz), 3.90 (brs, NH), 3.95 (t, 1 H, J = 10.8 Hz), 4.27 (dd, 1 H, J = 10.8, 3.5 Hz), 4.60 (d, 1 H, J = 3.5 Hz), 6.38 (d, 1 H, J = 8.0 Hz), 6.85-7.0 (m, 3 H), 7.05 (d, 1 H, J = 2.1 Hz), 7.10 (d, 2 H, J = 8.0 Hz); 13C NMR (CDCl3, proton decoupled): δ 25.4, 33.5, 40.1, 45.9, 63.3, 114.4, 116.8, 117.7, 120.4, 121.4, 122.5, 123.4, 124.5, 125.5, 127.1, 127.7, 128.2, 129.3, 129.4, 129.6, 138.9, 153.7; IR (KBr): 3381, 3087, 3030, 2960, 2933, 2891, 1697, 1574, 1499, 1478, 1329, 1245, 1059, 1030, 972 cm-1; EIMS : m/z 299 M+, 284, 254, 178, 168, 131, 117, 77.
3b: Oil, 1H NMR (CDCl3): δ 1.20 (s, 3 H), 1.45 (s, 3 H), 2.05 (dt, 1 H, J = 11.2, 3.3 Hz), 3.95 (t, 1 H, J = 11.2 Hz), 4.05 (brs, NH), 4.43 (d, 1 H, J = 11.2 Hz), 4.60 (dd, 1 H, J = 11.2, 3.3 Hz), 6.40 (d, 1 H, J = 8.0 Hz), 6.95-7.05 (m, 3 H), 7.10-7.25 (m, 3 H).
2e: Solid, mp130-131 °C; 1H NMR (CDCl3): δ 1.38 (s, 3 H), 1.45 (s, 3 H), 1.95 (dt, 1 H, J = 10.8, 3.5 Hz), 2.15 (s, 3 H), 3.60 (brs, NH), 3.80 (d, 1 H, J = 10.8 Hz), 4.20 (dd, 1 H, J = 10.8, 3.5 Hz), 4.60 (d, 1 H, J = 3.5 Hz), 6.55 (t, 1 H, J = 7.8 Hz), 6.80-6.98 (m, 3 H), 7.05 (d, 1 H, J = 8.0 Hz), 7.20 (m, 2 H); EIMS: m/z 281 M+, 265, 235, 149, 132, 116, 78; IR (KBr): 3392, 3225, 3028, 2988, 2831, 1651, 1568, 1488, 1274, 1181, 1048, 917 cm-1.
3e: Solid, mp122-123 °C; 1H NMR (CDCl3): δ 1.20 (s, 3 H), 1.40 (s, 3 H), 2.05 (dt, 1 H, J = 11.0, 3.0 Hz), 2.20 (s, 3 H), 3.95 (d, 1 H, J = 11.0 Hz), 4.05 (brs, NH), 4.40 (d, 1 H, J = 11.0 Hz), 4.50 (dd, 1 H, J = 11.0, 3.0 Hz), 6.70 (t, 1 H, J = 7.8 Hz), 6.85-7.05 (m, 3 H), 7.20 (m, 2 H), 7.40 (d, 1 H, J = 8.0 Hz).
2g: Solid, mp122-124 °C; 1H NMR (CDCl3): δ 1.30 (s, 3 H), 1.42 (s, 3 H), 1.90 (dt, 1 H, J = 11.0 and 3.3 Hz), 2.10 (s, 3 H), 3.60 (brs, NH), 3.70 (d, 1 H, J = 11.0 Hz), 4.18 (dd, 1 H, J = 11.0, 3.3 Hz), 4.50 (d, 1 H, J = 3.3 Hz), 5.0 (s, 2 H), 6.38 (d, 1 H, J = 8.0 Hz), 6.70-6.90 (m, 5 H), 7.25-7.35 (m, 5 H); 13C NMR (CDCl3): δ 20.6, 25.6, 33.2, 33.9, 40.9, 46.3, 63.6, 70.9, 113.5, 115.2, 116.5, 117.3, 124.4, 126.0, 126.8, 127.4, 127.8, 128.5, 137.2, 138.0, 148.0, 152.6; IR (KBr): 3395, 3168, 2855, 1655, 1598, 1460, 1275, 1182, 1048, 920 cm-1.