Subscribe to RSS
DOI: 10.1055/s-2002-31912
First Synthesis of 4,4-Difluoro-1,3-oxathiolan-5-one
Publication History
Publication Date:
07 February 2007 (online)
![](https://www.thieme-connect.de/media/synlett/200206/lookinside/thumbnails/10.1055-s-2002-31912-1.jpg)
Abstract
The synthesis of a novel 4,4-difluoro-1,3-oxathiolanone was reported from α,α-difluorosulfoxide. This route involved a fluorination of a symmetrical sulfide, a Pummerer rearrangement, and a ring closure mediated by organic acids.
Key words
halogenation - fluorine - sulfoxides - rearrangements - heterocycles
- 1
Vladimirskay EV.Novikevich OT.Demchuk OG. Farm. Zh. 1991, 6: 67 ; Chem. Abstr. 1992, 116, 194218 - 2
Pilgram KHG. inventors; US Pat. Appl. US 4019892. ; Chem. Abstr. 1977, 87, 53263 - 3
Krumkalns EV. inventors; US Pat. Appl. US 4282030. ; Chem. Abstr. 1981, 95, 163901 -
4a
Ead HA.Abdelaziz MA.Metwalli NH. Pol. J. Chem. 1991, 65: 1291 -
4b
Higashiya S.Narizuka S.Konno A.Maeda T.Momota K.Fuchigami T. J. Org. Chem. 1999, 64: 133 -
4c
Ogawa K.Yamada S.Terada T.Yamazaki T.Honna T. Synthesis 1984, 595 - 5
Yokoyama H. Synthesis 2000, 1637 -
6a
Kitazume T.Yamazaki T. Experimental Methods in Organic Fluorine Chemistry Kodansha Ltd; Tokyo: 1998. p.1 -
6b
Tozer MJ.Herpin TF. Tetrahedron 1996, 52: 8619 - 7
Thanh N.Ménage C.Bégué JP.Bonnet-Delpon D.Gantier JC.Pradines B.Doury JC.Dinh TT. J. Med. Chem. 1998, 41: 4101 -
8a
Jouen C.Pommelet JC. Tetrahedron 1997, 53: 12565 -
8b
Jouen C.Lemaître S.Lequeux T.Pommelet JC. Tetrahedron 1998, 54: 10801 -
8c
Lequeux T.Lebouc F.Lopin C.Yang H.Gouhier G.Piettre S. Org. Lett. 2001, 3: 185 -
9a
Satsumabayashi S.Irioka S.Kudo H.Tsujimoto K.Motoki S. Bull. Chem. Soc. Jpn 1972, 45: 913 -
9b
Kraus JL.Attardo G. Synthesis 1991, 1046 -
10a
Bordwell FG.Pitt BM. J. Am. Chem. Soc. 1955, 77: 572 -
10b
Truce WE.Birum GH.McBee ET. J. Am. Chem. Soc. 1952, 74: 3594 - 11
Bellingham R.Jarowicki K.Kociensky P.Martin V. Synthesis 1996, 285 - 13 See:
Kennedy M.McKervey MA. In Comprehensive Organic Synthesis Vol. 7: Pergamon; Oxford: 1991. p.193 -
14a
Parham WE.Edwards LD. J. Org. Chem. 1968, 33: 4150 -
14b
McCormick JE.McElhinney RS. J. Chem. Res., Miniprint 1981, 1: 256 -
14c
Milton J.Brand S.Jones MF.Rayner CM. Tetrahedron Lett. 1995, 36: 6961 -
15a
Owen D. Synlett 1995, 1163 -
15b
Brand S.Jones MF.Rayner CM. Tetrahedron Lett. 1997, 38: 3595 -
15c
Jin H.Siddiqui MA.Evans CA.Tse HLA.Mansour TS. J. Org. Chem. 1995, 60: 2621 -
17a
Butt AH.Percy JM.Spencer NS. Chem. Commun. 2000, 1697 -
17b
Zhao G.Sun X.Bienaymé H.Zhu J. J. Am. Chem. Soc. 2001, 123: 6700 - 18
Nokami J.Ryokume K.Inada J. Tetrahedron Lett. 1995, 36: 6099 - 20
Miyauchi M.Nakayama E.Watanabe K.Fujimoto K.Ide J. Sankyo Kenkyusho Nempo 1996, 38: 41 ; Chem. Abstr. 1987, 107, 197503
References
A degradation of the sulfoxide 9b occurred during the purification. It is preferable to use it without purification in the next step.
16Despite a quantitative conversion, a lost of 11 was observed during the distillation.
19
Experimental:
Methyl 2,2-difluoro-2-(methoxycarbonyl-trifluoro-acetoxymethylsulfanyl) acetate(10): To a solution of difluoroester(8b)
[8]
[20]
(2.00 g, 9.34 mmol) in CH2Cl2 (40 mL) was added NaHCO3 (1.57 g, 18.7 mmol) followed by meta-chloroperoxybenzoic acid (2.42 g, 14.0 mmol). The resulting mixture was stirred at r.t. for 70 min and then poured into a mixture of sat. aq NaHCO3 (25 mL) and sodium thiosulfate (25 mL). The layers were separated and the aq phase was extracted with CH2Cl2 (5 × 40 mL). The combined organic extracts were washed with sat. aq NaHCO3 (4 × 40 mL) and brine (40 mL), dried over MgSO4 and concentrated under vacuum to give the crude product(9b) (1.53 g, 6.65 mmol) in 71% yield.(9b): 1H NMR (CDCl3): δ = 3.83 (s, 3 H, CH
3O), 3.95 (s, 2 H, CH2), 4.00 (s, 3 H, CH
3O); 13C NMR (CDCl3): δ = 53.1 (t, 3
J
CF = 4.6 Hz, CH2), 53.4 (CH3), 54.7 (CH3), 118.6 (t, 1
J
CF = 302 Hz, CF2), 160.2 (t, 2
J
CF = 28 Hz, CO-CF2), 164.7 (CO); 19F NMR (CFCl3, CDCl3): δ = -109.6 (d, 2
J
FF = 235 Hz, 1 F), & ndash;110.8 (d, 2
J
FF = 235 Hz, 1 F). The crude sulfoxide(9b) (1.53 g, 6.65 mmol) was stirred at r.t. in the presence of trifluoroacetic anhydride (2.82 mL, 0.020 mol). After 48 h, the mixture was concentrated under vacuum, diluted with CH2Cl2 (20 mL) and washed with brine. The crude product was distilled under reduced pressure (70 °C/0.07 mm Hg) to afford(10) (1.5 g, 4.60 mmol) in 70% yield.1H NMR (CDCl3): δ = 3.87 (s, 3 H, CH
3O), 3.94 (s, 3 H, CH
3O), 6.63 (s, 1 H, CH); 13C NMR (CDCl3): δ = 54.4 (CH3), 54.6 (CH3), 74.8 (t, 3
J
CF = 3.9 Hz, CH), 114.1 (q, 1
J
CF = 228 Hz, CF3), 118.8 (t, 1
J
CF = 292 Hz, CF2), 156 (q, 2
J
CF = 44.5 Hz, COCF3), 161.2 (t, 2
J
CF = 32 Hz, COCF2), 164.0 (CO); 19F NMR (CDCl3): δ = -75.4 (s, 3 F, CF3), -81.6 (d, 2
J
FF = 224 Hz, 1 F), -83.3 (d, 2
J
FF = 224 Hz, 1 F); IR (NaCl): ν = 1802 (CO), 1772 (CO), 1762 (CO) cm-1; MS (EI, 70 eV): m/z (%) = 326(9) [M+], 239(33), 213(70), 179(22), 129(42), 103(100), 69(69), 45(44).
Methyl 4,4-difluoro-5-oxo-[1,3]-oxathiolane-2-carboxyl-ate(11): To a solution of(10) (1.48 g, 4.54 mmol) in CHCl3 (20 mL) under nitrogen was added triflic acid (0.60 mL, 6.81 mmol). After stirring overnight at r.t. the mixture was diluted wih CH2Cl2, washed with NaHCO3 (20 mL) and brine (20 mL). The organic layer was dried over MgSO4 and concentrated under vaccum. The crude residue (745 mg, 3.76 mmol) was distilled under reduced pressure (65 °C/1 mbar) to afford(11) (445 mg, 2.45 mmol) in 50% yield. 1H NMR (CDCl3): δ = 3.92 (s, 3 H, CH3), 5.91 (d, 1 H, 4
J
HF = 5.8 Hz, CH); 13C NMR (CDCl3): δ = 54.2 (CH3), 70.3 (d, 3
J
CF = 1.9 Hz, CH), 121.8 (t, 1
J
CF = 280 Hz, CF2), 161.7 (t, 2
J
CF = 30.5 Hz, CO), 166.3 (CO); 19F NMR (CDCl3): δ = -71.8 (dd, 2
J
FF = 243 Hz, 4
J
HF = 5.8 Hz, 1 F), -80.1 (d, 2
J
FF = 243 Hz, 1 F); IR (CHCl3/NaCl): ν = 1818 (CO), 1762 (CO), 1124, 1084, 1056 cm-1; MS (EI, 70 eV): m/z (%) = 198(7) [M+], 179(16), 139(35), 116(64), 95(18), 83(56), 63(63), 45(100); HMRS (EI) calcd for C5H4SO4F2 [M+]: 197.9798. Found: 197.9780.