Subscribe to RSS
DOI: 10.1055/s-2002-31926
Solid-Phase Synthesis of Aryl O-Glycoside Using Aqueous Base and Phase-Transfer Catalyst
Publication History
Publication Date:
07 February 2007 (online)
Abstract
We describe an efficient solid-phase synthesis of aryl O-glycosides using aqueous base and phase-transfer catalyst. This methodology can provide aryl O-glycosides selectively in excellent yield and purity without the production of C-glycoside. Application of this methodology to the synthesis of Phlorizin type aryl O-glycosides is reported.
Key Words
solid-phase synthesis - aryl O-glycoside - phase-transfer catalyst - glycosylation - phlorizin
-
1a
Dolle RE. J. Comb. Chem. 2001, 3: 477 -
1b
Hall DG.Manku S.Wang F. J. Comb. Chem. 2001, 3: 125 -
1c
Booth S.Hermkens PHH.Ottenheijm HCJ.Rees DC. Tetrahedron 1998, 54: 15385 -
1d
Cowley PM.Rees DC. Cur. Med. Chem. 1997, 4: 211 -
1e
Thompson LA.Ellman JA. Chem. Rev. 1996, 96: 555 -
1f
Fruchtel JS.Jung G. Angew. Chem., Int. Ed. Engl. 1996, 35: 17 -
1g
Gordon EM.Barrett RW.Dower WJ.Fodor SPA.Gallop MA. J. Med. Chem. 1994, 37: 1385 -
1h
Gallop MA.Barrett RW.Dower WJ.Fodor SPA.Gordon EM. J. Med. Chem. 1994, 37: 1233 -
2a
Furka A.Sebestyen F.Asgedom M.Dibo G. Abstr. 14th Int. Congr. Biochem., Prague, Czechoslovakia 1988, 5: 47 -
2b
Furka A.Sebestyen F.Asgedom M.Dibo G. Abstr. 14th Int. Symp. Med. Chem., Budapest: Hungary 1988, 288 -
2c
Nicolaou KC.Xiao X.-Y.Parandoosh Z.Senyei A.Nova MP. Angew. Chem., Int. Ed. Engl. 1995, 34: 2289 -
3a
Lou H.Li X.Onda M.Konda Y.Machida T.Toda Y.Harigaya Y. J. Nat. Prod. 1993, 56: 1437 -
3b
Aimi N.Hoshino H.Nishimura M.Sakai S.Haginiwa J. Tetrahedron Lett. 1990, 31: 5169 -
3c
Yoshikawa M.Shimada H.Nishida N.Li Y.Toguchida I.Yamahara J.Matsuda H. Chem. Pharm. Bull. 1998, 46: 113 -
3d
Calis I.Heilmann J.Tasdemir D.Linden A.Ireland CM.Sticher O. J. Nat. Prod. 2001, 64: 961 -
3e
Li X.-C.Jacob MR.Pasco DS.El Sohly HN.Nimrod AC.Walker LA.Clark AM. J. Nat. Prod. 2001, 64: 1282 -
4a
Demetzos C.Skaltsounis A.-L.Tillequin F.Koch M. Carbohydr. Res. 1990, 207: 131 -
4b
Kleine HP.Weinberg DV.Kaufman RJ.Sidhu RS. Carbohydr. Res. 1985, 142: 333 -
4c
Dess D.Kleine HP.Weinberg DV.Kaufman RJ. Synthesis 1981, 883 -
5a
Diedrich DF. J. Med. Pharm. Chem. 1962, 5: 1054 -
5b
Konda Y.Iwasaki Y.Takahata S.Arima S.Toida T.Kaji E.Takeda K.Harigaya Y. Chem. Pharm. Bull. 1997, 45(4): 626 -
5c
Hongu M.Saito K.Tsujihara K. Synth. Commun. 1999, 29: 2775 - 6
Gong Y.-D.Yoo S.-E. Bull. Korean Chem. Soc. 2001, 22(9): 941 -
8a
Uozumi Y.Danjo H.Hayashi T. Tetrahedron Lett. 1997, 38: 3557 -
8b
Bayer E.Rapp W. Chemistry of Peptides and Proteins Vol. 3:Voelter W.Bayer E.Ovchinikov YA.Iwanov VT. Walter de Gruyter; Berlin: 1986. p.3 -
8c
Rapp W. In Combinatorial Peptide and Nonpeptide LibrariesJung G. VCH; Weilheim: 1996. p.425 -
9a
O’Donnell MJ.Zhou C.Scott WL. J. Am. Chem. Soc. 1996, 118: 6070 -
9b
O’Donnell MJ.Delgado F.Hostettler C.Schwesinger R. Tetrahedron Lett. 1998, 39: 8775 -
9c
O’Donnell MJ.Drew MD.Pottorf RS.Scott WL. J. Comb. Chem. 2000, 2: 172 -
13a Review:
McKee FW.Hawkins WB. Physiol. Rev. 1945, 25: 255 -
13b
Alvarado F.Crane RK. Physiol. Rev. 1964, 93: 116 -
13c
Toggenburger G.Kessler M.Semenza G. Physiol. Rev. 1982, 688: 557 - 14
Miles CO.Main L.Nicholson BK. Aust. J. Chem. 1989, 42: 1103
References and Notes
ArgoGelΤ Μ (Wang chloride resin) was purchased from Argonaut Technologies, San Carlos, CA.
10Column: Mightysil RP-18 GP (ODS) 3 µm, 4.6 mmI. D. × 50 mm; mobile phase: 20 mM NH4OAc: MeOH = 70: 30 (0 min) Æ 10:90 (4 - 8 min); UV: 254 nm.
11General Procedure for Glycosylation of Phenol Exemplified with the Synthesis of m -10: The resin m -6 (4 × 30 mg, 0.17 mmol/g) was loaded into IRORIΤ Μ MicroKans. To a solution of Cs2CO3 in THF-MeOH (1:1, 4 mL) was added the MicroKans at ambient temperature. After being shaked for 17 h at the same temperature, the reaction mixture was drained to isolate the Kans. The Kans were sequentially washed with DMF (4 × 5 mL), THF-water (2:1, 4 × 5 mL), 5% HOAc-THF (4 × 5 mL), THF (4 × 5 mL), MeOH (4 × 5 mL), and dichloromethane (DCM) (4 × 5 mL) and dried in vacuo to give immobilized phenol m -7 in four Kans. Three MicroKans among them were exposed to a solution of glucosyl bromide 8a (463 mg) in 1,2-dichloroethane (4.2 mL). To the mixture were successively added 5% NaOH aq (2.1 mL), benzyl tri-n-butylammonium chloride (21.9 mg). After being shaked at ambient temperature for 15 h, the mixture was drained. Remaining three Kans were washed sequentially with DCM (5 mL), DMF (4 × 5 mL), THF-MeOH (1:1, 2 × 5 mL), 5% HOAc-THF (2 × 5 mL), THF (4 × 5 mL), MeOH (4 × 5 mL), and DCM (4 × 5 mL) and dried to give glycoside m -9. The resin in the three MicroKans was cleaved with 10% TFA-DCM (5 mL) for 30 min. The resulting solution was diluted with DCM (5 mL) and toluene (2 mL). The MicroKans were removal from the solution by means of tweezers. The acidic solution was concentrated to afford m -10 (9.8 mg, 0.014 mmol, 93%). Spectrum data of m -10: 1H NMR (300 MHz, CDCl3): δ = 8.03 (2 H, dd, J = 1.2, 8.4 Hz), 7.99-7.90 (4 H, m), 7.86 (2 H, dd, J = 1.5, 8.4 Hz), 7.58-7.25 (13 H, m), 7.04-6.97 (1 H, m), 6.60-6.47 (3 H, m), 5.98 (1 H, dd, J = 9.4, 9.6 Hz), 5.79 (1 H, dd, J = 7.8, 9.4 Hz), 5.70 (1 H, dd, J = 9.4, 9.6 Hz), 5.37(1 H, d, J = 7.8 Hz), 4.68 (1 H, dd, J = 3.3, 12.3 Hz), 4.53 (1 H, dd, J = 6.3, 12.3Hz), 4.37-4.28 (1 H, m); MS (ESI): 706 [M + NH4 +].
12Spectrum data, p -10: 1H NMR (300 MHz, CDCl3): δ = 8.05-7.82 (8 H, m), 7.58-7.24 (13 H, m), 6.89 (2 H, d, J = 9.0 Hz), 6.61 (2 H, d, J = 9.0 Hz), 5.97 (1 H, dd, J = 9.6, 9.9 Hz), 5.76 (1 H, dd, J = 8.1, 9.9 Hz), 5.70 (1 H, dd, J = 9.6, 9.9 Hz), 5.26 (1 H, d, J = 8.1 Hz), 4.66 (1 H, dd, J = 3.0, 12.3 Hz), 4.53 (1 H, dd, J = 6.3, 12.3 Hz), 4.30-4.23 (1 H, m); MS (ESI): 706 [M + NH4 +].
15Spectrum data, 18a: 1H NMR (300 MHz, CDCl3): δ = 12.99 (1 H, s), 7.99 (2 H, d, J = 8.0 Hz), 7.96-7.89 (4 H, m), 7.84 (2 H, d, J = 8.0 Hz), 7.60-7.24 (12 H, m), 7.10 (1 H, dd, J = 8.1, 8.4 Hz), 6.61 (1 H, d, J = 8.4 Hz), 6.56 (1 H, d, J = 8.1 Hz), 6.03 (1 H, dd, J = 9.6, 10.0 Hz), 5.92 (1 H, dd, J = 7.5, 9.6 Hz), 5.74 (1 H, dd, J = 9.6, 10.0 Hz), 5.63 (1 H, d, J = 7.5 Hz), 4.68 (1 H, dd, J = 2.7, 13.2 Hz), 4.52 (1 H, dd, J = 7.8, 13.2 Hz), 4.42-4.33 (1 H, m), 2.61 (3 H, s); MS (ESI): 748 [M + NH4 +]. 18b: 1H NMR (300 MHz, CDCl3): δ = 13.00 (1 H, s), 8.09 (2 H, dd, J = 1.5, 8.4 Hz), 8.03 (2 H, dd, J = 1.5, 8.4 Hz), 7.91 (2 H, dd, J = 1.5, 8.7 Hz), 7.81 (2 H, dd, J = 1.5, 8.7 Hz), 7.68-7.23 (12 H, m), 7.10 (1 H, dd, J = 7.5, 8.4 Hz), 6.63 (1 H, d, J = 7.5 Hz), 6.60 (1 H, d, J = 8.4 Hz), 6.17 (1 H, dd, J = 8.1, 10.2 Hz), 6.07 (1 H, d, J = 3.3 Hz), 5.71 (1 H, dd, J = 3.3, 10.2 Hz), 5.62 (1 H, d, J = 8.1 Hz), 4.67-4.50 (3 H, m), 2.65 (3 H, s); MS (ESI): 748 [M + NH4 +]. 18c: 1H NMR (300 MHz, CDCl3): δ = 12.97 (1 H, s), 8.03 (2 H, d, J = 6.9 Hz), 7.99-7.88 (4 H, m), 7.61-7.30 (10 H, m), 6.68 (2 H, dd, J = 2.0, 8.4 Hz), 5.92 (1 H, dd, J = 7.5, 7.8 Hz), 5.77 (1 H, dd, J = 5.7, 7.8 Hz), 5.64 (1 H, d, J = 5.7 Hz), 5.49-5.40 (1 H, m), 4.53 (1 H, dd, J = 3.5, 13.2 Hz), 3.89 (1 H, dd, J = 8.0, 13.2 Hz), 2.62 (3 H, s); MS (ESI): 614 [M + NH4 +]. 18d: 1H NMR (300 MHz, CDCl3): δ = 12.97 (1 H, s), 8.06 (2 H, dd, J = 1.5, 8.4 Hz), 7.98 (2 H, dd, J = 1.5, 8.7 Hz), 7.91 (2 H, dd, J = 1.2, 8.4 Hz), 7.65-7.25 (10 H, m), 6.69 (1 H, d, J = 8.4 Hz), 6.67 (1 H, d, J = 8.4 Hz), 6.09 (1 H, dd, J = 6.6, 9.0 Hz), 5.81-5.75 (1 H, m), 5.71 (1 H, dd, J = 3.3, 9.0 Hz), 5.58 (1 H, d, J = 6.6 Hz), 4.43 (1 H, dd, J = 3.9, 13.2 Hz), 4.08 (1 H, dd, J = 2.0, 13.2 Hz), 2.66 (3 H, s); MS (ESI): 614 [M + NH4 +].