Plant Biol (Stuttg) 2002; 4(3): 346-351
DOI: 10.1055/s-2002-32338
Original Paper
Georg Thieme Verlag Stuttgart ·New York

Phylogenetic Relationships Among Olea Species, Based on Nucleotide Variation at a Non-Coding Chloroplast DNA Region

L. Baldoni 1 , C. Guerrero 1 , K. Sossey-Aloui 2 , A. G. Abbott 2 , A. Angiolillo 1 , R. Lumaret 3
  • 1 Instituto di Ricerche sulla Olivicoltura, Perugia, Italy
  • 2 Dept. Biological Sciences, Clemson University, SC 29634-1903, USA
  • 3 Centre d'Ecologie Fonctionelle et Evolutive, BP 5051, 34033 Montpellier, France
Weitere Informationen

Publikationsverlauf

February 15, 2002

March 11, 2002

Publikationsdatum:
20. Juni 2002 (online)

Abstract

The purpose of this study was to assess nucleotide variation at a non-coding chloroplast DNA region in Olea species, to evaluate their phylogenetic relationships within the Olea genus and, more particularly, to clarify the relationships between cultivated olive (O. europaea) and the other taxa of section Olea. The analysis was made on an intergenic region between the trnT(UGU) and trnL(UAA) 5′ exon, within a large single copy region of the chloroplast genome. Site-specific primers were used to amplify the region by PCR. This sequence analysis was applied to the same array of Olea species as assayed by Lumaret et al. (2000[16]) using cpDNA RFLPs, thus making it possible to compare phylogenetic relationships analysed at two complementary levels of cpDNA variation. On the 666 bp aligned sequence, 8 different haplotypes were defined, with 9 single nucleotide mutations, a different length of a poly-T region and an indel for O. paniculata. Haplotypes were shared by the species pairs O. europaea-O.laperrinei, O. maroccana-O. cerasiformis, O. capensis-O. lancea and O. africana-O.indica. Phylogenetic analyses of these data distinguished four groups: the species Olea capensis and O. lancea, which both belong to subgenus Ligustroides, the Olea forms from southeast Africa, those from Asia and the taxa of northwest Africa and the Mediterranean Basin, which include olive crop. The results are consistent with those previously found using cpDNA RFLPs, with some minor differences observed within each group. They constitute further evidence to clarify the phylogeny of Olea.

References

  • 01 Amane,  M.,, Lumaret,  R.,, Hany,  V.,, Ouazzani,  N.,, Debain,  C.,, Vivier,  G.,, and Deguilloux,  M. F.. (1999);  Chloroplast-DNA variation in cultivated and wild olive (Olea europaea L.).  Theor. Appl. Genet.. 99 133-139
  • 02 Angiolillo,  A.,, Mencuccini,  M.,, and Baldoni,  L.. (1999);  Olive (Olea europaea L.) genetic diversity assessed by Amplified Fragment Length Polymorphisms.  Theor. Appl. Genet.. 98 411-421
  • 03 Besnard,  G., and Bervillé,  A.. (2000);  Multiple origins for Mediterranean olive (Olea europaea L. ssp. europaea) based upon mitochondrial DNA polymorphisms.  Life Sciences, CR Acad. Sci., Paris. 323 173-181
  • 04 Besnard,  G.,, Khadari,  B.,, Villemur,  P.,, and Bervillé,  A.. (2000);  Cytoplasmic male sterility in the olive (Olea europaea L.).  Theor. Appl. Genet.. 100 1018-1024
  • 05 Bitonti,  M. B.,, Cozza,  R.,, Chiappetta,  A.,, Contento,  A.,, Minelli,  S.,, Ceccarelli,  M.,, Gelati,  M. T.,, Maggini,  F.,, Baldoni,  L.,, and Cionini,  P. G.. (1999);  Amount and organization of the heterochromatin in Olea europaea and related species.  Heredity. 83 188-195
  • 06 Chevalier,  A.. (1948);  L'origine de l'olivier cultivé et ses variations.  Rev. Int. Bot. Appl. Agric. Trop.. 28 1-25
  • 07 Elant,  H.. (1976) Olive. Evolution of crop plants. Simmonds, M. W., ed. Scotland; Edimburg pp. 219-221
  • 08 Felsenstein,  J.. (1993) PHYLIP, Phylogeny Inference Package, Version 3.6. Distributed by the author. Univ. of Washington, Seattle; Department of Genetics
  • 09 Ferguson,  D. M.. (1999);  Phylogenetic analysis and relationships in Hydrophyllaceae based on ndhF sequence data.  System. Bot.. 23 (3) 253-268
  • 10 Fujii,  N.,, Ueda,  K.,, Watano,  Y.,, and Shimizu,  T.. (1999);  Further analysis of intraspecific sequence variation of chloroplast DNA in Primula cuneifolia Lebed. (Primulaceae): implications for biogeography of the Japanese alpine flora.  J. Plant Res.. 112 87-95
  • 11 Gielly,  L.,, Yuan,  Y. M.,, Kupfer,  P.,, and Taberlet,  P.. (1996);  Phylogenetic use of noncoding regions in the genus Gentiana L. Chloroplast trnL (UAA) intron versus nuclear ribosomal internal transcribed spacer sequences.  Mol. Phylogenet. Evol.. 5 460-466
  • 12 Green,  P. S., and Wickens,  G. E.. (1989) The Olea europaea complex. The Davis and Hedge Festschrift. Kit Tan, ed. Edinburgh; Edinburgh University Press pp. 287-299
  • 13 Hess,  J.,, Kadereit,  W.,, and Vargas,  P.. (2000);  The colonization history of Olea europaea L. in Macaronesia based on internal transcribed spacer 1 (ITS-1) sequences, randomly amplified polymorphic DNAs (RAPD), and intersimple sequence repeats (ISSR).  Mol. Ecol.. 9 857-868
  • 14 Johnson,  L. A. S.. (1957);  A review of the family Oleaceae. Contributions from the NSW.  National Herbarium. 2 397-418
  • 15 Lanner,  C.. (1998);  Relationships of wild Brassica species with chromosome number 2n = 18, based on comparison of the DNA sequence of the chloroplast intergenic region between trnL (UAA) and trnF (GAA).  Can. J. Bot.. 76 228-237
  • 16 Lumaret,  R.,, Amane,  M.,, Ouazzani,  N.,, Baldoni,  L.,, and Debain,  C.. (2000);  Chloroplast DNA variation in the cultivated and wild olive taxa of the genus Olea L.  Theor. Appl. Genet.. 101 547-553
  • 17 Maguire,  T. L.,, Conran,  J. G.,, Collins,  G. G.,, and Sedgley,  M.. (1997);  Molecular analysis of interspecific and intergeneric relationships of Banksia using RAPDs and non-coding chloroplast DNA sequences.  Theor. Appl. Genet.. 95 253-260
  • 18 McDade,  L. A., and Moody,  M. L.. (1999);  Phylogenetic relationships among Acanthaceae: evidence from non-coding trnL-trnF chloroplast DNA sequences.  Am. J. Bot.. 86 (1) 70-80
  • 19 Medail,  F.,, Quezel,  P.,, Besnard,  G.,, and Khadari,  B.. (2001);  Systematics, ecology and phylogeographic significance of Olea europaea L. ssp. maroccana (Greuter and Burdet ) P. Vargas et al., a relictual olive tree in south-west Morocco.  Bot. J. Linnean Soc.. 137 249-266
  • 20 Motomi,  I.,, Kawamoto,  A.,, Kita,  Y.,, Yukawa,  T.,, and Kurita,  S.. (1999);  Phylogenetic relationships of Amaryllidaceae based on matK sequence data.  J. Plant Res.. 112 207-216
  • 21 Oxelman,  B.,, Backlund,  M.,, and Bremer,  B.. (1999);  Relationships of the Buddlejaceae s.1. investigated using parsimony jackknife and branch support analysis of chloroplast ndhF and rbcL sequence data.  System. Bot.. 24 (2) 164-182
  • 22 Taberlet,  P.,, Gielly,  L.,, Pautou,  G.,, and Bouvet,  J.. (1991);  Universal primers for amplification of three non-coding regions of chloroplast DNA.  Plant Mol. Biol.. 17 1105-1109
  • 23 Turrill,  W. B.. (1951);  Wild and cultivated olives.  Kew Bull.. 3 437-442
  • 24 Vargas,  P., and Kadereit,  J. W.. (2001);  Molecular fingerprinting evidence (ISSR, Inter-Simple Sequence Repeats) for a wild status of Olea europaea L. (Oleaceae) in the Eurosiberian North of the Iberian Peninsula.  Flora. 196 142-152
  • 25 Wallander,  E., and Albert,  V. A.. (2000);  Phylogeny and classification of Oleaceae based on rps 16 and trnL-F sequence data.  Am. J. Bot.. 87 1827-1841
  • 26 Wang,  X. R.,, Tsumura,  Y.,, Yoshimaru,  H.,, Nagasaka,  K.,, and Szmidt,  A. E.. (1999);  Phylogenetic relationships of Eurasian pines (Pinus, Pinaceae) based on chloroplast rbcL, matK, rpl20-rps18 spacer, and trnV intron sequences.  Am. J. Bot.. 86 (12) 1742-1753
  • 27 Widmer,  A., and Baltisberger,  M.. (1999);  Extensive intraspecific chloroplast DNA (cpDNA) variation in the alpine Draba aizoides L. (Brassicaceae): haplotype relationships and population structure.  Mol. Ecol.. 8 1405-1415

L. Baldoni

Instituto di Ricerche sul Miglioramento Genetico delle Piante Foraggere

Via Madonna Ata, 130
CNR, 06128 Perugia
Italy

eMail: l.baldoni@irmgpf.pg.cnr.it

Section Editor: F. Salamini