Acupuncture analgesia is produced by activation of the descending pain inhibitory system (DPIS) through a specific pathway connected to the acupoints while still allowing maintenance of consciousness. The analgesia inhibitory system (AIS), in contrast, is activated by stimulation of acupoints or non-acupoints, leading to a nonspecific inhibition of different interconnected pathways. Therefore, acupoints and non-acupoints can be distinguished by their anatomically distinct brain pathways. The after-effects of AA might be produced by the actions of an increased amount of beta-endorphin released from the pituitary gland on components of the AA-producing pathway.
Zusammenfassung
Die Akupunktur-Analgesie basiert auf der Aktivierung des Systems der absteigenden Schmerzhemmung, hervorgerufen über spezifische Bahnen mit den Akupunkturpunkten, während gleichzeitig das Bewusstsein erhalten bleibt. Diffuse Schmerzhemmung hingegen kann durch Aktivierung von Akupunkturpunkten oder Nicht-Akupunkturpunkten aktiviert werden. Dies führt zu einer unspezifischen Hemmung vernetzter Bahnen. Akupunkturpunkte und Nicht-Akupunkturpunkte können somit durch ihre unterschiedlichen Wege im Gehirn erkannt werden. Langanhaltende Wirkungen der Akupunktur-Analgesie könnten im Zusammenhang mit einer Ausschüttung von Beta-Endorphinen aus der Hypophyse und deren Wirkung auf spezifische Nervenbahnen erklärt werden.
References
01
Atweh S. F., Kuhar M. J..
Autoradiographic localization of opiate receptors in rat brain: the brainstem.
Brain Res..
129
1997;
1-12
02
Arai T., Guo S. Y., Takeshige C..
Cholecystokinin in the analgesia inhibitory system and its antagonists in this system.
J. Showa Med. Assoc..
52
1992;
58-67
03
Huang S. F., Luo C. P., Takeshige C..
Identity of a central analgesia producing mechanism in Ho-ku point stimulation with that in Tsusanli point stimulation.
J. Showa Med. Assoc..
48
1998;
485-492
04
Lung C. H., Sun A. C., Tsao C. J., Chang Y. L., Fan L..
An observation of the humoral factor in acupuncture analgesia in rats.
Amer. J. Chin. Med..
2
1974;
203-205
05
Malizia E., Andreucci G., Paolucci D., Grescenzi F., Fabbri A., Fraioli F..
Electroacupuncture and peripheral β-endorphin and ACTH levels.
Lancet.
1979;
535-536
07
Sato T., Hishida F., Luo C. P., Tsuchiya M., Takeshige C..
Relations of adrenal gland and sodium ions in production of acupuncture and non-acupuncture points stimulation-produced analgesia.
J. Showa Med. Assoc..
49
1989;
286-294
11 Takeshige C.. Mechanism of acupuncture analgesia based on animal experiments. In: Pomeranz, B.; Stux, G. (eds.): Scientific Bases of Acupuncture. Springer-Verlag, Heidelberg 1990
12
Takeshige C..
Mechanism of acupuncture analgesia (AA) caused by low frequency stimulation of the acupuncture point based on animal experiments, Part 1: Acupuncture afferent and efferent pathways and the nature of AA.
Acupunct. Scient. Int. J..
1
1990;
75-88
14
Takeshige C..
Differentiation between acupuncture and non-acupuncture points by association with analgesia inhibitory system.
Acupunct. Electro-Ther. Res..
10
1985;
195-203
15 Takeshige C.. Inhibition associated with acupuncture analgesia: inactivation of hypersensitive neurons. Charlazonits, N.; Gola, M.: (eds.) Alan R. Liss, Inc. 1987: 255-262
16
Takeshige C., Kamada Y., Hisamatu T..
Commonly responsive neurons in the periaqueductal gray matter and midbrain reticular formation of rabbits to acupuncture stimulation, inversion, pressure on body parts and morphine.
Acupunct. Electro-Ther. Res..
6
1981;
57-74
18
Takeshige C., Luo C. P., Hishida F., Igarashi O..
Differentiation of acupuncture and non-acupuncture points by difference of associated opioids in the spinal cord in production of analgesia by acupuncture and non-acupuncture point stimulation, and relations between sodium and those opioids.
Acupunct. Electro-Ther. Res..
15
1990;
193-209
19
Takeshige C., Luo C. P., Kamada Y., Oka K., Murai M., Hisamatu T..
Relation between midbrain neurons (Periqueductal central gray and midbrain reticular formation) and acupuncture analgesia, animal hypnosis.
In: Bonica, J. et al. (eds.)
Advances Pain Res. Ther..
3
1979;
615-621
20
Takeshige C., Mera H., Hisamatu T., Tanaka M., Hishida F..
Inhibition of the analgesia inhibitory system by D-phenylalanine and proglumide.
Brain Res. Bull..
26
1991;
385-391
21
Takeshige C., Murai M., Tanaka M., Hachisu M..
Parallel individual variations in effectiveness of acupuncture, morphine analgesia, and dorsal PAG-SPA and their abolition by D-phenylalanine.
In: Bonica, J. et al. (eds.).
Adv. Pain Res. Ther..
5
1983;
563-569
23
Takeshige C., Oka K., Mizuno T., Hisamatu T., Luo C. P., Kobori M., Mera H., Fang T. Q..
The acupuncture point and its connecting central pathway for producing acupuncture analgesia.
Brain Res. Bull..
30
1993;
53-67
25
Takeshige C., Tsutiya M., Guo S. Y., Sato T..
Dopaminergic transmission in the hypothalamic arcuate nucleus to produce acupuncture analgesia in correlation with the pituitary gland.
Brain Res. Bull..
26
1991;
113-122
26
Takeshige C., Tsutiya M., Zhao W., Guo S..
Analgesia produced by pituitary ACTH and dopaminergic transmission in the arcuate.
Brain Res. Bull..
26
1991;
779-788
27
Takeshige C., Tanaka M., Sato T., Hishida F..
Mechanism of individual variation in effectiveness of acupuncture analgesia based on animal experiments.
Eur. J. Pain.
11
1990;
109-113
28
Takeshige C., Zhao W. H., Guo S. Y..
Convergence from the preoptic area and arcuate nucleus to the median eminence in acupuncture and non-acupuncture point stimulation analgesia.
Brain Res. Bull..
26
1991;
771-778
29
Takeshige C., Luo C. P., Kamada Y..
Modulation of EGG and unit discharges of deep structure of brain during acupunctureal stimulation and by hypnosis of rabbits.
In: Bonica, J.J.; Albe-Fressard, D. (ed.)
Adv. Pain Res. Ther. Raven Press.
1
1976;
781-785
30
Toyoda I., Takeshige C..
Changes in characteristics of analgesia produced by difference in duration of stimulation of acupuncture points.
J. Showa Med. Assoc..
52
1992;
1-7
31
Xu M., Aiuchi T., Nakaya K., Arakawa H., Maeda M., Tsuji A., Kato T., Takeshige C., Nakamura Y..
Effect of low-frequency electric stimulation on in vivo release of cholecystokinin-like immunoreactivity in medial thalamus of conscious rat.
Neurosci. Let..
118
1990;
205-207