References
- 1
Erion MD.
Walsh CT.
Biochemistry
1987,
26:
3417
- 2
Groth U.
Lehmann L.
Richter L.
Schöllkopf U.
Liebigs Ann. Chem.
1993,
427
- 3
Hercouet A.
Le Corre M.
Carboni B.
Tetrahedron Lett.
2000,
41:
197
- 4
Hah JH.
Gil JM.
Oh DY.
Tetrahedron Lett.
1999,
40:
8235
- 5
Diel PJ.
Maier L.
Phosphorus and Sulfur
1984,
20:
313
- 6
Reid JR.
Marmor RS.
J. Org. Chem.
1978,
43:
999
- 7
Duquenne C.
Goumain S.
Jubault P.
Feasson C.
Quirion J.-C.
Org. Lett.
2000,
2:
453
- 8
Hanessian S.
Cantin L.-D.
Roy S.
Andreotti D.
Gomtsyan A.
Tetrahedron Lett.
1997,
38:
1103
- 9
Hirao T.
Hagihara M.
Agawa T.
Bull. Chem. Soc. Jpn.
1985,
58:
3104
- 10
Seyferth D.
Marmor RS.
Hilbert P.
J. Org. Chem.
1971,
36:
1379
- 11
Regitz M.
Scherer H.
Anschütz W.
Tetrahedron Lett.
1970,
10:
753
- 12
Minami T.
Yamanouchi T.
Tokumasu S.
Hirao I.
Bull. Chem. Soc. Jpn.
1984,
57:
2127
- 13
Midura WH.
Krysiak JA.
Wieczorek MW.
Majzner WR.
Mikolajczyk M.
Chem. Commun.
1998,
1109
- 14
Midura WH.
Krysiak JA.
Mikolajczyk M.
Tetrahedron
1999,
55:
14791
- 15
Yamazaki S.
Takada T.
Imanishi T.
Moriguchi Y.
Yamabe S.
J. Org. Chem.
1998,
63:
5919
- 16
Jubault P.
Goumain S.
Feasson C.
Collignon N.
Tetrahedron
1998,
54:
14767
- 17
Goumain S.
Jubault P.
Feasson C.
Collignon N.
Synthesis
1999,
1903
- 18
Goumain S.
Jubault P.
Feasson C.
Collignon N.
Tetrahedron Lett.
1999,
40:
8099
- 19
Fadel A.
Tesson N.
Eur. J. Org. Chem.
2000,
2153
- 20
Fadel A.
Tesson N.
Tetrahedron: Asymmetry
2000,
11:
2023
- 21
Griffin CE.
Kraas E.
Terasawa H.
Griffin GW.
Lankin DC.
J. Heterocycl. Chem.
1978,
15:
523
- 22
Nasser J.
About-Jaudet E.
Collignon N.
Phosphorus Sulfur Silicon
1990,
54:
171
- 23
Kondo K.
Liu Y.
Tunemoto D.
J. Chem. Soc., Perkin Trans. 1
1974,
1279
- 24
Verhé R.
De Kimpe N.
De Buyck L.
Courtheyn D.
Van Caenegem L.
Schamp N.
Bull. Soc. Chim. Belg.
1983,
93:
371
- 25
Little RD.
Verhé R.
Monte WT.
Nugent S.
Dawson JR.
J. Org. Chem.
1982,
47:
362
- 26
Verhé R.
De Kimpe N.
De Buyck L.
Courtheyn D.
Schamp N.
Bull. Soc. Chim. Belg.
1978,
87:
215
27
General Procedure for the Bromination of Alkylidenemalonates or Cyanides. A solution of 10 mmol of Knoevenagel adduct 2, 13 mmol of NBS and 10 mg of BPO in 5 mL of CCl4 was refluxed under UV irradiation for approximately 2 hours. The end of the reaction was monitored carefully by 1H NMR. Evaporation of the solvent gave almost pure bromoalkylidene malonates or cyanides 4 in good yields.
28 Spectral data of 4k: 1H NMR [CDCl3, δ (ppm)]: 1.06 (6 H, t, J = 7.3 Hz, Me2), 2.30 (4 H, m, CH2), 3.91 (3 H, s, OMe), 7.74 (1 H, s, CH=). 13C NMR [CDCl3, δ(ppm)]: 10.31 (Me), 34.06 (CΗ2); 42.64 (CBr), 53.71 (OMe); 106.37 (=C); 113.31 (CN); 161.83 (CH=); 162.74 (COOMe). IR (cm-1): 2231 (CN), 1740 (C=O), 1621 (C=C). MS (m/z) (%): 234 (0.5); 182(12); 181(100); 148(60); 122(12); 121(29); 107(14); 94(14); 84(13); 49(12). Anal. Calcd. for C10H14BrNO2: C 46.17; H 5.42; N 5.38. Found: C 46.35; H 5.53; N 5.02.
29
General Procedure for the Preparation of the Cyclopropylphosphonates. A mixture of 2.5 mmol bromoalkylidenemalonate or -cyanide 4 and 3 mmol of trialkyl phosphite was stirred under nitrogen atmosphere for the appropriate time (Table
[1]
). The volatile compounds formed and the excess of phosphite were then removed by evaporation under vacuum and the mixture was purified by flash chromatography or by distillation.
30 Spectral data of 7a: 1H NMR [CDCl3, δ (ppm)]: 1.24 (3 H, d, J= 1.3 Hz, Me); 1.58 (3 H, s, Me); 1.86 (1 H, d, J = 1.9 Hz, CH-P); 3.76 (3 H, s, OMe); 3.77 (3 H, d, J =1.9 Hz, OMe); 3.78 (3 H, d, J = 1.6 Hz, OMe); 3.81 (3 H, s, OMe). 13C NMR [CDCl3, δ(ppm), J
P-C(Hz)]: 19.53 (Me, 5); 22.21 (Me, 5.1); 27.65 (CHP, 188); 30.38 (CMe2, 3.6); 43.56 [C(COOMe]2, 3.6); 52.15 (OMe, 6.1); 52.65 (OMe); 52.99 (OMe, 4.9); 53.03 (OMe); 166.64 (COOMe, 123.3); 167.92 (COOMe). 31P NMR referenced to H3PO4 [CDCl3, δ(ppm)]: 25.00. IR (cm-1): 1256 (P=O), 1733 (C=O). MS (m/z) (%): 294 (M+, 0.5); 235(12); 231(20); 229(30); 220(8); 203(21); 186(9); 185(86); 153(100); 125(12); 110(14); 109(18); 93(11); 79(12). Anal. Calcd. for C11H19O7P: C 44.90; H 6.51.
Found: C 44.65; H 6.63.
31 For details of Reaction rates see Table 2.
Table 2 Kinetic Data of the Reactions of the electrophilic Allyl Halides 4 with Trivalent Nucleophiles to 7 at 35 °C. |
|
Entry
|
X
|
K 1/mol.s
|
Rel. K
|
|
a
|
Br
|
95.8 × 10-6
|
1.00
|
a′
|
Cla
|
57.6 × 10-6
|
0.60
|
b
|
Br
|
6.6 × 10-3
|
68.89
|
c
|
Br
|
33.2 × 10-3
|
346.56
|
d
|
Br
|
28.9 × 10-6
|
0.30
|
e
|
Br
|
8.2 × 10-6
|
0.19
|
f
|
Br
|
14.6 × 10-6
|
0.15
|
g
|
Br
|
176.1 × 10-6
|
2.88
|
h
|
Br
|
139.0 × 10-6
|
1.45
|
I
|
Br
|
16.1 × 10-6
|
0.17
|
|
a The chloro derivative was prepared according to the literature procedure by condensation of the chloroaldehyde and the malonate using titanium (IV)chloride and pyridine.
[24]
|
|