Klinische Neurophysiologie 2002; 33(2): 100-105
DOI: 10.1055/s-2002-32782
Originalia
© Georg Thieme Verlag Stuttgart · New York

Transkranielle Magnetstimulation in der Therapie von Schlaganfallfolgen

Application of Transcranial Magnetic Stimulation in Stroke TherapyA.  Flöel1 , S.  Knecht1
  • 1Klinik und Poliklinik für Neurologie, Universitätsklinikum Münster
Further Information

Publication History

Publication Date:
12 July 2002 (online)

Zusammenfassung

Das Grundprinzip der transkraniellen Magnetstimulation (TMS) besteht in der Modulation der kortikalen Erregbarkeit mit netto-inhibierenden oder netto-fazilitierenden Effekten. Damit eröffnet sich ein weites Feld der Förderung adaptiver und Hemmung maladaptiver Reorganisationsvorgänge des Gehirns. Einer Reihe viel versprechender Ansätze zur Beeinflussung von neurologischen Defiziten nach Gehirninfarkt stehen zur Zeit nur wenige gesicherte oder klinisch direkt umsetzbare Anwendungen gegenüber. Dies könnte sich aber in absehbarer Zeit ändern. Erste positive Ergebnisse bei Patienten werden zur Zeit in größeren randomisierten und plazebokontrollierten Studien überprüft.

Abstract

The basic principle of transcranial magnetic stimulation (TMS) is modulation of cortical excitability, with either net-inhibitory or net-facilitatory effects. TMS offers new therapeutic options to support adaptive or inhibit maladaptive reorganization in the brain. A number of promising approaches for modulation of neurological deficits after stroke exist, but few have been thoroughly evaluated. There are, however, promising positive results observed in single case studies. These results are presently evaluated in randomized and placebo-controlled clinical trials.

Literatur

  • 1 Penfield W, Jasper H. Epilepsy and the Functional Anatomy of the Human Brain. Boston, Mass; Little Brown & Co 1954
  • 2 Merton P A, Morton H B. Stimulation of the cerebral cortex in the intact human subject.  Nature. 1980;  285 227
  • 3 Barker A T, Jalinous R, Freeston I L. Non-invasive magnetic stimulation of human motor cortex.  Lancet. 1985;  1 1106-1107
  • 4 Traversa R, Cicinelli P, Oliveri M, Giuseppina P M, Filippi M M, Pasqualetti P, Rossini P M. Neurophysiological follow-up of motor cortical output in stroke patients.  Clin Neurophysiol. 2000;  111 1695-1703
  • 5 Rothwell J C, Thompson P D, Day B L, Boyd S, Marsden C D. Stimulation of the human motor cortex through the scalp.  Exp Physiol. 1991;  76 159-200
  • 6 Cadwell J. Optimizing magnetic stimulator design. In: Levy WJ, Cracco RQ, Barker AT, Rothwell J (eds) Magnetic Motor Stimulation: Basic Principles and Clinical Experience. Amsterdam; Elsevier 1991
  • 7 Pascual-Leone A, Bartres-Faz D, Keenan J P. Transcranial magnetic stimulation: studying the brain-behaviour relationship by induction of „virtual lesions”.  Philos Trans R Soc Lond B Biol Sci. 1999;  354 1229-1238
  • 8 Wassermann E M, Lisanby S H. Therapeutic application of repetitive transcranial magnetic stimulation: a review.  Clin Neurophysiol. 2001;  112 1367-1377
  • 9 Strafella A P, Paus T, Barrett J, Dagher A. Repetitive transcranial magnetic stimulation of the human prefrontal cortex induces dopamine release in the caudate nucleus.  J Neurosci. 2001;  21 RC157
  • 10 Lisanby S H, Belmaker R H. Animal models of the mechanisms of action of repetitive transcranial magnetic stimulation (rTMS): comparisons with electroconvulsive shock (ECS).  Depress Anxiety. 2000a;  12 178-187
  • 11 Lisanby S H, Luber B, Perera T, Sackeim H A. Transcranial magnetic stimulation: applications in basic neuroscience and neuropsychopharmacology.  Int J Neuropsychopharmacol. 2000b;  3 259-273
  • 12 Pascual-Leone A, Valls Sole J, Wassermann E M, Hallett M. Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex.  Brain. 1994a;  117 847-858
  • 13 Maeda F, Keenan J P, Tormos J M, Topka H, Pascual-Leone A. Modulation of corticospinal excitability by repetitive transcranial magnetic stimulation.  Clin Neurophysiol. 2000;  111 800-805
  • 14 Chen R, Classen J, Gerloff C, Celnik P, Wassermann E M, Hallett M, Cohen L G. Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation.  Neurology. 1997;  48 1398-1403
  • 15 Muellbacher W, Ziemann U, Boroojerdi B, Hallett M. Effects of low-frequency transcranial magnetic stimulation on motor excitability and basic motor behavior.  Clin Neurophysiol. 2000;  111 1002-1007
  • 16 Kosslyn S M, Pascual-Leone A, Felician O, Camposano S, Keenan J P, Thompson W L, Ganis G, Sukel K E, Alpert N M. The role of area 17 in visual imagery: convergent evidence from PET and rTMS.  Science. 1999;  284 167-170
  • 17 Speer A M, Kimbrell T A, Wassermann E M, Repella D, Willis M W, Herscovitch P, Post R M. Opposite effects of high and low frequency rTMS on regional brain activity in depressed patients.  Biol Psychiatry. 2000;  48 1133-1141
  • 18 Hallett M. Transcranial magnetic stimulation and the human brain.  Nature. 2000;  406 147-150
  • 19 Pascual-Leone A, Walsh V, Rothwell J. Transcranial magnetic stimulation in cognitive neuroscience - virtual lesion, chronometry, and functional connectivity.  Curr Opin Neurobiol. 2000;  10 232-237
  • 20 Jahanshahi M, Rothwell J. Transcranial magnetic stimulation studies of cognition: an emerging field.  Exp Brain Res. 2000;  131 1-9
  • 21 Chen R, Seitz R J. Changing cortical excitability with low-frequency magnetic stimulation.  Neurology. 2001;  57 379-380
  • 22 Post R M, Speer A M, Weiss S R, Li H. Seizure models: anticonvulsant effects of ECT and rTMS.  Prog Neuropsychopharmacol Biol Psychiatry. 2000;  24 1251-1273
  • 23 Maeda F, Keenan J P, Tormos J M, Topka H, Pascual-Leone A. Interindividual variability of the modulatory effects of repetitive transcranial magnetic stimulation on cortical excitability.  Exp Brain Res. 2000;  133 425-430
  • 24 Wassermann E M. Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation, June 5 - 7, 1996.  Electroencephalogr Clin Neurophysiol. 1998;  108 1-16
  • 25 McConnell K A, Nahas Z, Shastri A, Lorberbaum J P, Kozel F A, Bohning D E, George M S. The transcranial magnetic stimulation motor threshold depends on the distance from coil to underlying cortex: a replication in healthy adults comparing two methods of assessing the distance to cortex.  Biol Psychiatry. 2001;  49 454-459
  • 26 George M S, Nahas Z, Molloy M, Speer A M, Oliver N C, Li X B, Arana G W, Risch S C, Ballenger J C. A controlled trial of daily left prefrontal cortex TMS for treating depression.  Biol Psychiatry. 2000;  48 962-970
  • 27 George M S, Lisanby S H, Sackeim H A. Transcranial magnetic stimulation: applications in neuropsychiatry.  Arch Gen Psychiatry. 1999;  56 300-311
  • 28 George M S, Wassermann E M, Williams W A, Callahan A, Ketter T A, Basser P, Hallett M, Post R M. Daily repetitive transcranial magnetic stimulation (rTMS) improves mood in depression.  Neuroreport. 1995;  6 1853-1856
  • 29 Pascual-Leone A, Rubio B, Pallardo F, Catala M D. Rapid-rate transcranial magnetic stimulation of left dorsolateral prefrontal cortex in drug-resistant depression (see comments).  Lancet. 1996;  348 233-237
  • 30 Teneback C C, Nahas Z, Speer A M, Molloy M, Stallings L E, Spicer K M, Risch S C, George M S. Changes in prefrontal cortex and paralimbic activity in depression following two weeks of daily left prefrontal TMS.  J Neuropsych Clin Neurosci. 1999;  11 426-435
  • 31 Nahas Z, Lomarev M, Roberts D R, Shastri A, Lorberbaum J P, Teneback C, McConnell K, Vincent D J, Li X, George M S, Bohning D E. Unilateral left prefrontal transcranial magnetic stimulation (TMS) produces intensity-dependent bilateral effects as measured by interleaved BOLD fMRI.  Biol Psychiatry. 2001;  50 712-720
  • 32 Pascual-Leone A, Valls-Sole J, Brasil-Neto J P, Cammarota A, Grafman J, Hallett M. Akinesia in Parkinson's disease. II. Effects of subthreshold repetitive transcranial motor cortex stimulation.  Neurology. 1994;  44 892-898
  • 33 Ghabra M B, Hallett M, Wassermann E M. Simultaneous repetitive transcranial magnetic stimulation does not speed fine movement in PD.  Neurology. 1999;  52 768-770
  • 34 Siebner H R, Tormos J M, Auer C, Catala M D, Conrad B, Pascual-Leone A. Low-frequency repetitive transcranial magnetic stimulation of the motor cortex in writer's cramp.  Neurology. 1998;  52 529-537
  • 35 Tergau F, Naumann U, Paulus W, Steinhoff B J. Low-frequency repetitive transcranial magnetic stimulation improves intractable epilepsy.  Lancet. 1999;  353 2209
  • 36 Lefaucheur J P, Drouot X, Nguyen J P. Interventional neurophysiology for pain control: duration of pain relief following repetitive transcranial magnetic stimulation of the motor cortex.  Neurophysiol Clin. 2001;  31 247-252
  • 37 Liepert J, Hallett M, Samii A, Oddo D, Celnik P, Cohen L G, Wassermann E M. Motor cortex excitability in patients with cerebellar degeneration.  Clin Neurophysiol. 2000;  111 1157-1164
  • 38 Hoffman R E, Boutros N N, Hu S, Berman R M, Krystal J H, Charney D S. Transcranial magnetic stimulation and auditory hallucinations in schizophrenia.  Lancet. 2000;  355 1073-1075
  • 39 Pascual-Leone A, Houser C M, Reese K, Shotland L I, Grafman J, Sato S, Valls Sole J, Brasil Neto J P, Wassermann E M, Cohen L G. et al . Safety of rapid-rate transcranial magnetic stimulation in normal volunteers.  Electroencephalogr Clin Neurophysiol. 1993;  89 120-130
  • 40 Mottaghy F M, Hungs M, Brugmann M, Sparing R, Boroojerdi B, Foltys H, Huber W, Topper R. Facilitation of picture naming after repetitive transcranial magnetic stimulation.  Neurology. 1999;  53 1806-1812
  • 41 Boroojerdi B, Phipps M, Kopylev L, Wharton C M, Cohen L G, Grafman J. Enhancing analogic reasoning with rTMS over the left prefrontal cortex.  Neurology. 2001;  56 526-528
  • 42 Triggs W J, Kirshner H S. Improving brain function with transcranial magnetic stimulation?.  Neurology. 2001;  56 429-430
  • 43 Hebb D O. The organization of behavior. A neuropsychological theory. New York; Wiley 1949
  • 44 Bliss T VP, Lomo T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the erforant path.  J Physiol Lond. 1973;  232 331-356
  • 45 Buonomano D V, Merzenich M M. Associative synaptic plasticity in hippocampal CA1 neurons is not sensitive to unpaired presynaptic activity.  J Neurophysiol. 1996;  76 631-636
  • 46 Stefan K, Kunesch E, Cohen L G, Benecke R, Classen J. Induction of plasticity in the human motor cortex by paired associative stimulation.  Brain. 2000;  123 572-584
  • 47 Knecht S, Flöel A, Dräger B, Breitenstein C. Accelerated verbal processing by regional neural facilitation: A transcranial magnetic stimulation study in a patient with Broca's aphasia.  Brain Lang. 2001;  79 S152-S155
  • 48 Kinsbourne M. The right hemisphere and recovery from aphasia. In: Whitaker HA (ed) Handbook of Neurolinguistics. San Diego, CA; 1998
  • 49 Epstein C M. Transcranial magnetic stimulation: language function.  J Clin Neurophysiol. 1998;  15 325-332
  • 50 Knecht S, Flöel A, Dräger B, Sommer J, Breitenstein C, Henningsen H, Ringelstein E B, Pascual-Leone A. Functional significance of language lateralization: A „virtual lesion” study.  (in press)
  • 51 Heilman K M. Neglect. Clinical and anatomic aspects. In: Feinberg TE, Farah MJ (eds) Behavioral neurology and neuropathology. New York; McGraw-Hill 1997
  • 52 Vallar G. Spatial frames of reference and somatosensory processing: a neuropsychological perspective.  Philos Trans R Soc Lond B Biol Sci. 1997;  352 1401-1409
  • 53 Kinsbourne M. Hemi-neglect and hemisphere rivalry.  Adv Neurol. 1977;  18 41-49
  • 54 Oliveri M, Rossini P M, Cicinelli P, Traversa R, Pasqualetti P, Filippi M M, Caltagirone C. Neurophysiological evaluation of tactile space perception deficits through transcranial magnetic stimulation.  Brain Res Brain Res Protoc. 2000a;  5 25-29
  • 55 Oliveri M, Rossini P M, Filippi M M, Traversa R, Cicinelli P, Palmieri M G, Pasqualetti P, Caltagirone C. Time-dependent activation of parieto-frontal networks for directing attention to tactile space. A study with paired transcranial magnetic stimulation pulses in right-braindamaged patients with extinction.  Brain. 2000b;  123 1939-1947
  • 56 Rafal R. Virtual neurology.  Nat Neurosci. 2001;  4 862-864
  • 57 Hilgetag C C, Theoret H, Pascual-Leone A. Enhanced visual spatial attention ipsilateral to rTMS-induced „virtual lesions” of human parietal cortex.  Nat Neurosci. 2001;  4 953-957
  • 58 Classen J, Schnitzler A, Binkofski F, Werhahn K J, Kim Y S, Kessler K R, Benecke R. The motor syndrome associated with exaggerated inhibition within the primary motor cortex of patients with hemiparetic.  Brain. 1997;  120 605-619
  • 59 Ziemann U, Muellbacher W, Hallett M, Cohen L G. Modulation of practice-dependent plasticity in human motor cortex.  Brain. 2001;  124 1171-1181
  • 60 Hess G, Donoghue J P. Long-term potentiation and long-term depression of horizontal connections in rat motor cortex.  Acta Neurobiol Exp (Warsz.). 1996;  56 397-405
  • 61 Andersen G, Vestergaard K, Ingeman-Nielsen M, Jensen T S. Incidence of central post-stroke pain.  Pain. 1995;  61 187-193
  • 62 Tsubokawa T, Katayama Y, Yamamoto T, Hirayama T, Koyama S. Treatment of thalamic pain by chronic motor cortex stimulation.  Pacing Clin Electrophysiol. 1991;  14 131-134
  • 63 Tsubokawa T, Katayama Y, Yamamoto T, Hirayama T, Koyama S. Chronic motor cortex stimulation in patients with thalamic pain.  J Neurosurg. 1993;  78 393-401
  • 64 Carroll D, Joint C, Maartens N, Shlugman D, Stein J, Aziz T Z. Motor cortex stimulation for chronic neuropathic pain: a preliminary study of 10 cases.  Pain. 2000;  84 431-437
  • 65 Migita K, Uozumi T, Arita K, Monden S. Transcranial magnetic coil stimulation of motor cortex in patients with central pain.  Neurosurgery. 1995;  36 1037-1039
  • 66 Lefaucheur J, Drouot X, Pollin B, Nguyen J. Chronic pain treated by rTMS of motor cortex.  Electroencephalogr Clin Neurophysiol. 1999;  110 A166
  • 67 Pridmore S, Oberoi G. Transcranial magnetic stimulation applications and potential use in chronic pain: studies in waiting.  J Neurol Sci. 2000;  182 1-4
  • 68 Rasmussen K G, Rummans T A. Electroconvulsive therapy for phantom limb pain.  Pain. 2000;  85 297-299
  • 69 Ziemann U, Hallett M, Cohen L G. Mechanisms of Deafferentation-Induced Plasticity in Human Motor Cortex.  J Neurosci. 1998;  18 7000-7007
  • 70 Weiss S RB, Li X L, Rosen J B, Li H, Heynen T, Post R M. Quenching: inhibition of development and expression of amygdala kindled seizures with low frequency stimulation.  Neuroreport. 1995;  6 2171-2176
  • 71 Ebert U, Ziemann U. Altered seizure susceptibility after high-frequency transcranial magnetic stimulation in rats.  Neurosci Lett. 1999;  273 155-158
  • 72 Fleischmann A, Hirschmann S, Dolberg O T, Dannon P N, Grunhaus L. Chronic treatment with repetitive transcranial magnetic stimulation inhibits seizure induction by electroconvulsive shock in rats.  Biol Psychiatry. 1999;  45 759-763
  • 73 Steinhoff B J, Stodieck S R, Paulus W, Witt T N. Transcranial stimulation.  Neurology. 1992;  42 1429-1430
  • 74 Menkes D L, Gruenthal M. Slow-frequency repetitive transcranial magnetic stimulation in a patient with focal cortical dysplasia.  Epilepsia. 2000;  41 240-242
  • 75 Lisanby S H, Gutman D, Luber B, Schroeder C, Sackheim H A. Sham TMS: Intracerebral measurement of the induced electrical field and the induction of motor-evoked potentials.  Biol Psychiatry. 2001;  49 460-463

Dr. med. A. Flöel

Klinik und Poliklinik für Neurologie · Universitätsklinikum Münster

Albert-Schweizer-Straße 33

48149 Münster