References
1
Wenkert E.
Hudlicky T.
Showalter HD.
J.
Am. Chem. Soc.
1978,
100:
4893
2
Tsuda Y.
Isobe K.
Ukai A.
J.
Chem. Soc., Chem. Commun.
1971,
1554
3
Becker Y.
Eisenstadt A.
Stille JK.
J.
Org. Chem.
1980,
45:
2145
4
Bach T.
Angew.
Chem., Int. Ed. Engl.
1996,
35:
884
5
Kinderman SS.
van Maarseveen JH.
Schoemaker HE.
Hiemstra H.
Rutjes FP.
Org. Lett.
2001,
3:
2045
6a
Breederveld H.
Recl. Trav. Chim. Pays-Bas
1960,
79:
401
6b
Breederveld H.
Recl.
Trav. Chim. Pays-Bas
1960,
79:
1197
7a
Lenz GR.
Synthesis
1978,
489
7b
Campbell AL.
Lenz GR.
Synthesis
1987,
421
8
Meth-Cohn O.
Westwood KT.
J. Chem. Soc., Perkin Trans.
1
1984,
1173
9a
Suen YH.
Horeau A.
Kagan HB.
Bull. Soc. Chim. Fr.
1965,
1454
9b
Kagan HB.
Horeau A.
Suen YH.
Bull. Soc. Chim. Fr.
1965,
1457
10a
Eiden F.
Nagar BS.
Arch.
Pharm. (Weinheim, Ger.)
1964,
297:
367
10b
Eiden F.
Nagar BS.
Arch. Pharm. (Weinheim,
Ger.)
1963,
296:
458
10c
Eiden F.
Nagar BS.
Arch. Pharm. (Weinheim,
Ger.)
1963,
296:
445
11
Ben-Ishai D.
Giger R.
Tetrahedron. Lett.
1965,
4523
12a
Kurtz P.
Disselnkötter H.
Liebigs
Ann. Chem.
1972,
764:
69
12b
Brettle R.
Shibib SM.
Wheeler KJ.
J. Chem. Soc., Perkin Trans. 1
1985,
831
13a
Fürstner A.
Dierkes T.
Thiel OR.
Blanda G.
Chem.-Eur.
J.
2001,
7:
5286
13b
Stefanuti I.
Smith SA.
Taylor RJK.
Tetrahedron Lett.
2000,
41:
3735
13c
Shen R.
Porco JA.
Org. Lett.
2000,
2:
1333
14
Larock RC.
Comprehensive Organic Transformations
Wiley;
New
York:
1999.
15
Stille JK.
Becker Y.
J. Org. Chem.
1980,
45:
2139
16 This work is a part of the Ph.D. Thesis
of S. Sergeyev, University of Zürich, 2002.
17
Hubert J.
Moniotte P.
Goebbels G.
Warin R.
Teyssié P.
J.
Chem. Soc., Perkin Trans. 2
1973,
1954
Boc2NH represents an
exellent alternative to the classical Gabriel method for preparation
of amines from halides:
18a
Grehn L.
Ragnarson U.
Synthesis
1987,
285
18b
Grehn L.
Ragnarson U.
Acc. Chem. Res.
1991,
24:
285 ; and references cited therein
19 We have shown that the use of Cs2CO3 as
the phase-transfer catalyst allows to avoid the preparation of Na
or K salt of Boc2NH, see ref.
[18a]
20
Preparation of N
-(2-Methylprop-2-enyl)-3-phenylpropanamide
9a (Typical Procedure for the Preparation of Substituted N
-Allylamides
9a-d). A mixture of 6a (4.0
mL, 40 mmol), Boc2NH (4.34 g, 20 mmol), Cs2CO3 (6.52
g, 20 mmol), and DMF (20 mL) was stirred for 12 h at r.t., then
the volatile materials were removed in vacuo. The residue was partitioned
between CH2Cl2 (75 mL) and H2O
(50 mL), the organic phase was separated and washed with H2O
(2 × 50 mL), dried (MgSO4), and concentrated
to afford crude 7a. It was dissolved in CH2Cl2 (20
mL) and treated with TFA (6.1 mL, 80 mmol) in one portion. After
4 h stirring at r.t. the mixture was concentrated and the residue
was dried in vacuo to give crude 8a as
TFA salt. It was dissolved in the mixture of CH2Cl2 (75
mL) and Et3N (8.3 mL, 60 mmol) and treated dropwise at
0 °C with 3-phenylpropanoyl chloride (2.83 mL, 19
mmol). The mixture was stirred for 1 h at 0 °C,
then allowed to reach r.t., washed with H2O (25 mL),
10% aq citric acid (25 mL), again H2O (2 × 25
mL), and dried (MgSO4). Evaporation of the solvent in
vacuo and crystallization of the residue from hexane/EtOAc
afforded 9a (3.82 g, 94% total
yield after 3 steps). Slightly yellow solid, mp 51-52 °C.
1H
NMR (CDCl3): δ = 1.65 (s, 3 H, Me),
2.51 (t, 2 H, J = 7.7 Hz,
CH2CO), 2.96 (t, 2 H, J = 7.7
Hz, CH
2Ph), 3.75 (d, 2 H, J = 6.0 Hz,
CH2N), 4.68, 4.76 (2 s-like m, 2 H, CH2=C),
5.80 (br s, NH), 7.15-7.28 (m, 5 H, Ph). 13C
NMR (CDCl3): δ = 20.1 (Me), 31.6 (CH2Ph), 38.3 (CH2CO), 44.9 (CH2N), 110.7
(CH2=C), 126.1 (arom.
CH), 128.2 (2 arom. CH), 128.4 (2 arom. CH), 140.7 (C), 141.8 (C),
172.0 (C=O). CI-MS (NH3): m/z (%) = 407(29) [2
M + 1]+, 221(25) [M + NH4]+,
204(100) [2 M + 1]+.
21
Preparation of
2a/2a′ (Typical Procedure for the Isomerization
of N
-Allylamides
to N
-Prop-1-enylamides). A
mixture of 1a (945 mg, 5 mmol) and Fe(CO)5 (0.2
mL, 1 mmol) was stirred under Ar for 16 h at 100 °C.
The mixture was allowed to reach r.t., then the catalyst was removed
in vacuo and collected in a trap, cooled by liquid N2.
Content of the trap was treated with 5% alcoholic FeCl3 solution
to destroy toxic Fe(CO)5. The residue in the reaction
flask was dissolved in CHCl3 and filtered through Celite.
Evaporation of the solvent in vacuo and column chromatography of
the residue on silica gel (CH2Cl2/EtOAc
10:1) afforded 2a (548 mg, 58%)
and 2a′ (350 mg, 37%),
total yield of 2a/2a′ 95%.
(
E
)-3-Phenyl-
N
-prop-1-enyl-propanamide(2a). Colorless solid,
mp 113-114.5 °C.
1H
NMR (CDCl3): δ = 1.62 (dd, 3 H, J = 1.7, 6.7
Hz, Me), 2.49 (t, 2 H, J = 7.8
Hz, CH2CO), 2.95 (t, 2 H, J = 7.8
Hz, CH
2Ph), 5.09 (qd, 1 H, J = 6.7, 14.2
Hz, CH=CHN), 6.71-6.78
(m, 1 H, CH=CHN), 7.15-7.28
(m, 5 H, Ph), 7.40 (br d, NH). 13C
NMR (CDCl3): δ = 14.7 (Me), 31.4 (CH2Ph), 38.1 (CH2CO), 107.8 (CH=CHN), 123.1 (CH=CHN), 126.2 (arom. CH), 128.2 (2 arom.
CH), 128.4 (2 arom. CH), 140.6 (arom. C), 169.2 (C=O).
CI-MS (NH3): m/z (%) = 207(37)[M + NH4]+),
190(100) [M + 1]+).
(
Z
)-3-Phenyl-
N
-prop-1-enyl-propanamide (2a′). Colorless
solid, mp 53.5-55 °C.
1H
NMR (CDCl3): δ = 1.49 (dd, 3 H, J = 1.5, 7.0
Hz, Me), 2.57 (t, 2 H, J = 7.7
Hz, CH2CO), 2.96 (t, 2 H, J = 7.7
Hz, CH
2Ph), 4.73 (qd, 1 H, J = 7.0, 8.9
Hz, CH=CHN), 6.64-6.71
(m, 1 H, CH=CHN), 7.16-7.28
(m, 6 H, Ph, NH). 13C NMR (CDCl3): δ = 10.7
(Me), 31.4 (CH2Ph), 38.0 (CH2CO), 105.3 (CH=CHN), 121.8 (CH=CHN), 126.2 (arom. CH), 128.2 (2 arom.
CH), 128.5 (2 arom. CH), 140.5 (arom. C), 169.5 (C=O).
CI-MS (NH3): m/z (%) = 207(48) [M + NH4]+, 190(100) [M + 1]+).
22
E/Z ratio was determined from the integral
intensities of the signals of CH=CHN,
(E)- or (Z)-configuration
of double bond was assigned based on the value of coupling constants (typically
13.5-14.2 Hz for (E)- and 8.5-9.0
Hz for (Z)-enamides).
23 It should be noted, that our findings
are in contrast with those of Stille and Becker, reported decomposition
of N-(3,3-dimethylallyl)acetamide upon
the action of Fe(CO)5, see ref.
[15]
24 Prepared by alkylation of 1a with MeI in DMF in the presence of NaH.
25
N-Allylphthalimide
afforded N-(prop-1-enyl)-phthalimide (E/Z 10:
1) in 99% yield after 15 h at 100 °C.
Interestingly, our results were in disagreement with those of Rossi
and Barola, reporting only partial conversion of some N-allylimides with Fe(CO)5: Rossi P.
Barola PF.
Ann.
Chim.
1969,
59:
762
26
N-Tosylallylamine
remained unchanged upon the action of Fe(CO)5.