RSS-Feed abonnieren
DOI: 10.1055/s-2002-32966
First Chemoenzymatic Synthesis of Optically Active Uracil and Chromen-4-one Substituted Homoallylic Alcohols: An Entry into Chiral Pool
Publikationsverlauf
Publikationsdatum:
25. Juli 2002 (online)
Abstract
Optically active uracil and chromen-4-one substituted homoallylic alcohols were obtained from the corresponding racemic alcohols by Pseudomonas cepacia lipase catalyzed transesterification in high enantiomeric ratio (E) under mild reaction conditions.
Key words
kinetic resolution - homoallylic alcohol - enzymes - indium - allylations
-
1a
Jaber JJ.Mitsui K.Rychnovsky SD. J. Org. Chem. 2001, 66: 4679 ; and references cited therein -
1b
Samoshin VV.Smoliakova IP.Han M.Gross PH. Mendeleev Commun. 1999, 219 -
2a
Brown HC.Kulkarni SV.Racherla US. J. Org. Chem. 1994, 59: 365 -
2b
Wuts PGM.Obrzut ML.Thompson PA. Tetrahedron Lett. 1984, 25: 4051 -
2c
Trost BM.Rhee YH. J. Am. Chem. Soc. 1999, 121: 11680 -
3a
Loh T.-P.Hu Q.-Y.Ma L.-T. J. Am. Chem. Soc. 2001, 123: 2450 -
3b
Adam W.Saha-Moller CR.Schmid KS. J. Org. Chem. 2001, 66: 7365 - 4
Schmidt B. Org. Lett. 2000, 2: 791 - 5
Keck GE.Li X.-Y.Knutson CE. Org. Lett. 1999, 1: 411 -
6a
Zhu B.Panek JS. Tetrahedron Lett. 2000, 42: 1863 -
6b
Machajewski TD.Wong C.-H. Synthesis 1999, 1469 - 7
Felpin FX.Girard S.Vo-Thanh G.Robins RJ.Villieras J.Lebreton J. J. Org. Chem. 2001, 66: 6305 ; and references cited therein - 8
Felpin FX.Vo-Thanh G.Robins RJ.Villieras J.Lebreton J. Synlett 2000, 1646 - 9
Girard S.Robins RJ.Villieras J.Lebreton J. Tetrahedron Lett. 2000, 42: 9245 - 10
Cossy J.Willis C.Bellosta V.Bouzbouz S. Synlett 2000, 1461 -
11a
Yatagai H.Yamamoto Y.Maruyama K. J. Am. Chem. Soc. 1980, 102: 4548 -
11b
Hayashi T.Konishi M.Kumada M. J. Org. Chem. 1983, 48: 281 -
11c
Marshall JA.Yanik MM. J. Org. Chem. 1999, 64: 3798 -
12a
Dreher SD.Hornberger KR.Sarraf ST.Leighton JL. Org. Lett. 2000, 2: 3197 -
12b
Dimitrov V.Kostova K.Hesse M. Tetrahedron: Asymmetry 1994, 5: 1891 -
13a
Chiu P.Lautens M. In Stereoselective Heterocyclic SynthesisMetz P. Springer-Verlag; Berlin, Heidelberg: 1999. Chap. 1. -
13b
Moreno-Manas M.Pleixats R. In Advances in Heterocyclic Chemistry Vol. 66:Katritzky AR. Academic Press; California: 1996. Chap. 2. -
13c
Wu Y.-C.Chang F.-R.Duh C.-Y.Wang S.-K. Heterocycles 1992, 34: 667 -
14a
Brown HC.Vara Prasad JVN.Zee S.-H. J. Org. Chem. 1986, 51: 432 -
14b
Corey EJ.Yu C.-M.Kim S.-S. J. Am. Chem. Soc. 1989, 111: 5495 -
14c
Roush WR.Park JC. J. Org. Chem. 1990, 55: 1143 -
14d
Hafner A.Duthaler RO.Marti R.Rihs G.Rothe-Streit P.Schwarzenbach F. J. Am. Chem. Soc. 1992, 114: 2321 -
14e
Racherla US.Brown HC. J. Org. Chem. 1992, 57: 6614 -
14f
Racherla US.Brown HC. J. Org. Chem. 1991, 56: 401 -
15a
Loh T.-P.Zhou J.-R.Yin Z. Org. Lett. 1999, 1: 1855 -
15b
Keck GE.Krishnamurthy D. Org. Synth. 1998, 62: 12 -
15c
Mikami K.Terada M.Nakai T. J. Am. Chem. Soc. 1989, 111: 1940 -
15d
Costa AL.Piazza MG.Tagliavini E.Trombini C.Umani-Ronchi A. J. Am. Chem. Soc. 1993, 115: 7001 -
16a
Carrea G.Riva S. Angew. Chem. Int. Ed. 2000, 39: 2226 -
16b
Jaeger K.-E.Reetz MT. Trends in Biotechnology 1998, 16: 396 -
16c
Silverman RB. The Organic Chemistry of Enzyme-Catalyzed Reactions Academic Press; USA: 2000. -
16d In
Stereoselective Biocatalysis
Patel RN. Marcel Dekker; New York: 1999. -
17a
Singh S.Kumar S.Chimni SS. Tetrahedron: Asymmetry 2001, 12: 2457 -
17b
Singh S.Kumar S.Chimni SS. Biotechnol. Lett. 2000, 22: 1237 -
17c
Chimni SS.Singh S.Kumar S.Mahajan S. Tetrahedron: Asymmetry 2002, 13: 511 - 18
Heidelberger C. In Pyrimidine and Pyrimidine antimetabolites in Cancer MedicineHoland JF.Frei E. Lea and Febiger; Philadelphia, PA: 1984. p.801 -
19a
De Clercq E.Descamps J.De Somer P.Barr PJ.Jones AS.Walker RT. Proc. Natl. Acad. Sci.U.S.A. 1979, 76: 2947 -
19b
Kundu NG.Mahanty JS.Chowdhury C.Dasgupta SK.Das B.Spears CP.Balzarini J.De Clerq E. Eur. J. Med. Chem. 1999, 34: 389 ; and references cited therein -
20a
Leary JJ.Brigati DJ.Ward DC. Proc. Natl. Acad. Sci. U.S.A. 1983, 80: 4045 -
20b
Welcher AA.Torres AR.Ward DC. Nucl. Acids Res. 1986, 14: 10027 -
20c
Melton DA.Krief PA.Rebagliati MR.Maniatis T.Zinn K.Green MR. Nucl. Acids Res. 1984, 12: 7035 -
20d
Prober JM.Trainer GL.Dam RJ.Hobbs FW.Robertson CW.Zagursky RJ.Cocuzza AJ.Jensen MA.Baumeister K. Science 1987, 238: 336 -
22a
Badjic JD.Kadnikova NK.Kostic NM. Org. Lett. 2001, 3: 2025 -
22b
Reetz MT.Wenkel R.Avnir D. Synthesis 2000, 781 -
22c
Reetz MT.Zonta A.Simpelkaup J.Konene W. Chem. Commun. 1996, 319 ; and ref. -
25a
Kazlauskas RJ.Weissfloch ANE.Rapport AT.Cuccia LA. J. Org. Chem. 1991, 56: 2656 -
25b
Weissfloch ANE.Kazlauskas RJ. J. Org. Chem. 1995, 60: 6959 -
25c
Burgess K.Jennings LD. J. Am. Chem. Soc. 1991, 113: 6129 -
25d
Kim M.-J.Cho HJ. J. Chem. Soc., Chem. Commun. 1992, 1411 - 26
Chen ChSh.Fujimoto Y.Girdaukas G.Sih JC. J. Am. Chem. Soc. 1982, 104: 7294
References
General procedure for allylation: Indium metal (0.506 mg, 4.4 mmol) and allyl bromide (970 mg, 0.75 ml, 8 mmol) were added to a stirred solution of aldehydes 1a-c (4 mmol) in 20 mL 50% aq THF. The reaction was allowed to proceed till the aldehyde was consumed (12-16 h) (TLC). Finally, a saturated aqueous solution of NH4Cl was added and the solution was extracted with CH2Cl2. The combined organic layers were dried and concentrated to give 2a-c, which were purified by column chromatography.
23Physical and spectral data for the
representative cases are given here. (RS)-2a: Yellow liquid (76%); IR (Neat):
3410, 2980, 1620 cm-1; MS (m/z): 210 (M+); 1H
NMR (CDCl3): δ 2.32-2.64 (m, 2 H, CH2),
3.33 (s, 3 H, CH3), 3.42 (s, 3 H, CH3), 4.62
(dd, 1 H, J = 5.1 and 7.2 Hz,
CH), 5.10-5.18 (m, 2 H, CH2), 5.76-5.90
(m, 1 H, CH), 7.21 (m, 1 H, Ur-6H);13C NMR
(CDCl3): δ 27.71 (CH3), 37.03 (CH3),
40.78 (CH2), 67.49 (CH), 114.67 (Ur-C5), 118.55 (CH2),
134.10 (CH), 139.35 (Ur-C6), 151.38 (C=O), 162.87 (C=O).
(RS)-2b: Pale
yellow liquid (80%); IR (Neat): 3447, 2958, 1560
cm-1;
MS (m/z): 210 (M+); 1H
NMR (CDCl3): δ 2.39-2.66 (m, 3 H, CH2 and
OH), 3.98 (s, 3 H, OCH3), 4.01 (s, 3 H, OCH3),
4.83 (dd, 1 H, J = 7.6 and 5.1
Hz, CH), 5.12-5.19 (m, 2 H, CH2), 5.74-5.82
(m, 1 H, CH), 8.24 (s, 1 H, Pym-6H); 13C
NMR/DEPT (CDCl3): δ 41.15 (-ve,
CH2), 53.82 (+ve, OCH3), 54.61 (+ve,
OCH3), 66.67 ((+ve, CH), 118.28 (-ve, =CH2),
133.73 (+ve, =CH), 144.78 (ab, Pym-C5), 155.70 (+ve,
Pym-C6), 164.42 (ab, Pym-C), 168.03 (ab, Pym-C). (R)-3a: Pale
liquid; [α]D
27: +66.53
(c 0.52, CH2Cl2) for 98% ee. IR (Neat)
: 2910, 1720, 1650 cm-1; MS (m/z): 252 (M+); 1H
NMR (CDCl3): δ 2.02 (s, 3 H, OAc), 2.49-2.69
(m, 2 H,CH2), 3.28 (s, 3 H, CH3), 3.35 (s,
3 H, CH3), 4.98-5.06 (m, 2 H,CH2),
5.55-5.73 (m, 2 H, 2 × CH)), 7.12 (m,
1 H, C6H); 13C NMR (CDCl3): δ 21.00
(CH3), 27.75 (CH3), 37.07 (N-CH3),
37.51 (CH2), 69.37 (CH), 111.40 (C-5), 118.33 (CH2), 132.78
(CH), 140.82 (C-6), 151.30 (C=O), 161.71(C=O), 169.83
(C=O). (R)-3b:
Yellow liquid; [α]D
27: +49.42
(c 1.05, CH2Cl2) for 95% ee; IR (Neat):
2920, 1730 and 1590 cm-1; MS (m/z): 252 (M+); 1H
NMR (CDCl3): δ 2.08 (s, 3 H, OAc), 2.57-2.62
(m, 2 H, CH2), 3.99 (s, 3 H, OCH3), 4.01 (s,
3 H, OCH3), 5.03-5.09 (m, 2 H,CH2),
5.64-5.78 (m, 1 H, CH), 5.97 (t, 1 H, J = 4.33
Hz, CH), 8.19 (s, 1 H, Pym-6H); 13C NMR
(CDCl3): δ 20.97 (CH3), 38.58 (CH2),
54.04 (OCH3), 5.76 (OCH3), 68.16 (CH), 113.78
(Pym-C5), 118.36 (CH2), 132.70 (CH), 156.19 (Pym-C6),
164.79 (Pym-C), 168.10 (Pym-C), 169.92 (C=O).
The acetates of (S)- alcohols and racemic alcohols were prepared by stirring with excess (5 equiv) of acetyl chloride and finally washing with 20% Na2CO3 solution.