RSS-Feed abonnieren
DOI: 10.1055/s-2002-32971
Easy Access to (n+3)-Dimethylamino-1-ethenylbicyclo[n.1.0]alkanes and their Facile Conversion to Ring-annelated Cyclopentadienes [1]
Publikationsverlauf
Publikationsdatum:
25. Juli 2002 (online)
Abstract
Aminocyclopropanation of 1-ethenylcycloalkenes 2a-d with N,N-dibenzyl- and N,N-dimethylformamide, respectively, by treatment with cyclohexylmagnesium bromide in the presence of methyltitanium triisopropoxide yielded the exo-(n+3)-N,N-dimethylamino-1-ethenylbicyclo[n.1.0]alkanes 3a-d (58-72%). Compounds 7b-d could be transformed by thermal vinylcyclopropane to cyclopentene rearrangement to the corresponding exo-4-dimethylaminobicyclo[n.3.0]alk-1-enes 7b-d (84-90%). Elimination of the dimethylamino group led to the cyclopentadienes 11b-d and 12b-d (72-82%). The 5-dimethylamino-1-ethenylbicyclo[2.1.0]pentane did not undergo the typical vinylcyclopropane rearrangement, but ring-opening at the bridgehead-bridgehead bond to form 1-ethenyl-2-dimethylaminocyclopentene 8.
Key words
cyclopentadiene derivatives - cyclopropane derivatives - organometallics - rearrangement - titanium chemistry
-
1a
Part 82 in the series ‘Cyclopropyl Building Blocks for Organic Synthesis’. Part 81 see: Frank, D.; Kozhushkov, S. I.; Labahn, T.; de Meijere, A. Tetrahedron 2002, in press.
-
1b
Part 80: von Seebach, M.; de Meijere, A.; Grigg, R. Eur. J. Org. Chem. 2002, in press.
- For reviews on substituted cyclopentadienyl ligands and their complexes see:
-
2a
Okuda J. Top. Curr. Chem. 1992, 160: 97 -
2b
Janiak C.Schumann H. Adv. Organomet. Chem. 1991, 33: 291 -
2c
Okuda J.Eberle T. In MetallocenesTogni A.Halterman RL. Wiley; New York: 1998. p.415 - 3
Winterfeldt E. Chem. Rev. 1993, 93: 827 - 4
Halterman RL. Chem. Rev. 1992, 92: 965 - 5
Williams CM.Chaplinski V.Schreiner PR.de Meijere A. Tetrahedron Lett. 1998, 39: 7695 - 1-Ethenylcyclobutene (2a):
-
6a
Markgraf JH.Greeno EW.Miller DM.Zaks WJ.Lee GA. Tetrahedron Lett. 1983, 24: 241 -
6b
Thummel RP.Nutakul W. J. Org. Chem. 1977, 42: 300 - 1-Ethenylcycloalkenes 2b-d and NMR spectroscopic data:
-
7a
Mason TJ.Harrison MJ.Hall JA.Sargent GD. J. Am. Chem. Soc. 1973, 95: 1849 -
7b
Rodriguez J.Brun P.Waegell B. J. Organomet. Chem. 1989, 359: 343 -
7c
Biela R.Bilas W.Ihsan U.Pritzkow W.Schmidt-Renner W. J. Prakt. Chem. 1983, 325: 893 -
7d
Thummel RP.Rickburn B. J. Org. Chem. 1971, 36: 1365 -
7e
Meier H.Schmitt M. Tetrahedron Lett. 1989, 30: 5873 -
7f
Maciagiewicz I.Dybowski P.Skowronñska A. Tetrahedron Lett. 1999, 40: 3791 -
7g
Salomon RG.Sinka A.Salomon MF. J. Am. Chem. Soc. 1987, 100: 520 - 11
Dané LM.de Haan JW.Klosterziel H. Tetrahedron Lett. 1970, 9: 2755 -
12a
Hudlicky T.Becker DA.Fan RL.Kozhushkov SI. Methods in Organic Chemistry (Houben-Weyl) Vol. E 17c:de Meijere A. Thieme; Stuttgart: 1997. p.2538 -
12b
Hudlicky T.Reed JW. In Comprehensive Organic Synthesis Vol. 5:Trost BM.Fleming I. Pergamon Press; Oxford: 1991. p.899 -
13a
Richey HG.Shull DW. Tetrahedron Lett. 1976, 575 -
13b
Williams CM.de Meijere A. J. Chem. Soc., Perkin Trans. 1 1998, 3699 -
15a
The necessity of relatively high temperatures for the rearrangement of 3b-d is consistent with the fact that the dimethylamino and the ethenyl group in each of them are cis-oriented with respect to each other. It is known that the direct ring enlargement of a cis-2-donor-substituted ethenylcyclopropane to a cyclopentene is much slower than that of the trans isomer, and the cis to trans isomerization of 3b-d, which would correspond to an exo to endo isomerization, is retarded due to the bulk of the dimethylamino group.
-
15b Cf. ref. and ref. and see also:
McGaffin G.Grimm B.Heinecke U.Michaelsen H.de Meijere A.Walsh R. Eur. J. Org. Chem. 2001, 3559 - 16
Pauli A.Meier H. Chem. Ber. 1987, 120: 1617
References
Alternatively, 1-ethenylcycloalkenes 2a-d may be prepared from the corresponding cycloalkanones via the enol triflates by Stille cross coupling with tri-n-butylvinylstannane. Cf. ref. [6]
9
General Procedure
(GP) for the Preparation of 1-ethenyl-
exo
-(
n
+3)-dialkylaminobicyclo[
n
.1.0]alkanes
3: To a well-stirred solution of the corresponding 1-ethenylcycloalkene 2a-d (10
mmol), MeTi(i-PrO)3 (12 mmol)
and N,N-dialkylformamide
(10-20 mmol) in 30 mL of THF was added cyclohexylmagnesium
bromide (13.3-24 mL, 20-36 mmol) as a 1.50 M solution
in diethyl ether) over a period of 2 h, and the mixture was stirred
at ambient temperature overnight. The reaction was quenched by carefully
adding 5 mL of water, the mixture was exposed to air until it had
turned light yellow or colorless and then filtered. The solids on
the filter were washed with diethyl ether (3 × 20
mL). The combined filtrates were concentrated in vacuo, and the
light yellow residue was subjected to column chromatography (column
2 × 25 cm, 40 g of silica gel) eluting
with pentane/diethyl ether/triethylamine 90:9.5:0.5.
exo
-5-Dibenzylaminobicyclo[2.1.0]pentane
(3a): According to GP, 962 mg (12 mmol)
of 1-ethenylcyclo-butene (2a) with N,N-dibenzylformamide
(5.63 g, 25 mmol), methyltitanium triisopropoxide (2.88 g, 12 mmol)
and 15.8 mL (30 mmol) of cyclohexylmagnesium bromide solution (1.90
M in diethyl ether) gave 2.20 g (63%) of 3a as
a
light yellow oil. 1H NMR (250 MHz,
CDCl3): δ = 1.42
(ddd, 2
J = 11.0, 3
J = 6.5, 3
J = 3.9 Hz,
1 H, 3-H
endo
), 1.55 (ddd, 2
J = 11.0, 3
J = 6.5, 3
J = 4.6 Hz,
1 H, 2-H
endo
), 1.79
(d, 3
J = 4.6 Hz,
1 H, 4-H), 2.01 (dddd, 2
J = 11.0, 3
J = 11.0, 3
J = 4.6, 3
J = 4.6 Hz,
1 H, 3-H
exo
), 2.31
(ddd, 2
J = 11.0, 3
J = 11.0, 3
J = 3.9 Hz,
1 H, 2-H
exo
), 2.36
(s, 1 H, 5-H),
3.61 (AB, d, 2
J = 14.0 Hz,
2 H, NCH2Ph), 3.80 (AB, d, 2
J = 14.0 Hz,
2 H, NCH2Ph), 5.09 (dd, 2
J = 1.9, 3
J
trans
= 17.5 Hz,
1 H, 7-H), 5.17 (dd, 2
J = 1.9, 3
J
cis
= 10.8 Hz,
1 H, 7-H), 6.20 (dd, 3
J
trans
= 17.5, 3
J
cis
= 10.8 Hz,
1 H, 6-H), 7.25-7.47 (m, 10 H, Ph-H).
13C
NMR (62.9 MHz, CDCl3, additionally DEPT): δ = 19.2 (-,
C-3), 22.9 (-, C-2), 31.3 (+, C-4), 36.0 (Cquat,
C-1), 56.9 (-, 2 C, NCH2Ph), 57.7 (+,
C-5), 112.3 (-, C-7), 126.9 (+, 2 C,
Ph-C), 128.1 (+, 4 C, Ph-C), 129.3 (+,
4 C, Ph-C), 137.4 (+, C-6), 137.9 (Cquat,
2 C, Ph-C). MS (70 eV): m/z (%) = 289(16) [M+],
288(12) [M+ - H],
262(3) [M+ - C2H3], 224(11),
198(29) [M+ - C7H7],
170(5) [M+ - C7H7 - C2H4], 144(20) [M+ - C7H7 - C4H6],
106(8) [HNC7H7
+],
91(100) [C7H7
+].
C21H23N: 289.1830 (correct HRMS). Anal. Calcd for
C20H23N (289.4): C, 87.15; H, 8.01; N, 4.84.
Found; C, 86.88; H, 7.90; N, 4.97.
All new compounds were fully characterized
by spectroscopic techniques (1H and 13C
NMR, MS), and bulk purities - except for the quaternary
ammonium salts 9 and N-oxides 10 - were established by elemental
analyses. Spectroscopic data of representative examples: exo-N
,
N
-Dimethyl-(1-ethenylbicyclo[4.1.0]hept-7-yl)amine
(3c): 1H NMR (500 MHz,
CDCl3): δ = 1.03
(ddd, 3
J = 1.8, 3
J = 8.0 Hz, 3
J
trans
= 4.3 Hz,
1 H, 6-H), 1.08-1.24 (m, 3 H, 3-H*, 4-H),
1.27-1.37 (m, 1 H, 4-H), 1.45 (d, 3
J
trans
= 4.3 Hz,
1 H, 7-H), 1.52-1.63 (m, 2 H, 2-H, 5-H), 1.87-1.98
(m, 2 H, 2-H, 5-H), 2.20 (s, 6 H, CH3), 4.99
(dd, 2
J = 1.6, 3
J = 10.8 Hz,
1 H, 2′-H), 5.03 (dd, 2
J = 1.6, 3
J = 17.6 Hz,
1 H, 2′-H), 5.82 (dd, 3
J = 10.8, 3
J = 17.6 Hz, 1 H,
1′-H). 13C NMR (62.9 MHz,
CDCl3, DEPT): δ = 21.1 (-,
C-3*), 22.7 (-, C-4*), 22.1 (-,
C-5**), 25.8 (-, C-2**), 27.7
(+, C-6), 28.5 (Cquat, C-1), 45.0 (+,
2 C, CH3), 58.4 (+, C-7), 110.4 (-,
C-2′), 143.7 (+, C-1′). MS (70 eV,
EI):
m/z (%) = 165 (100) [M+],
150 (42), 136 (62), 122 (30), 108 (23),
84 (57), 70 (38), 58 (30), 42 (48).
Anal. Calcd for C11H19N (165.3): C, 79.94;
H, 11.59; N, 8.47. Found: C, 79.66; H, 11.35;
N, 8.53.
exo-N
,
N
-Dimethyl-(1-ethenylbicyclo[5.1.0]oct-8-yl)amine
(3d): 1H NMR (500 MHz,
CDCl3): δ = 0.89-1.14 (m,
4 H, 2-H*, 6-H, 7-H), 1.20-1.31 (m, 1 H,
3-H*), 1.40 (d, 3
J
trans
= 3.8 Hz,
1 H, 8-H), 1.48-1.56 (m, 1 H, 3-H*),
1.58-1.72 (m, 2 H, 4-H*), 1.74-1.83
(m, 1 H, 5-H*), 2.19 (s, 6 H, CH3),
2.14-2.27 (m, 1 H, 6-H), 2.30-2.37
(m, 1 H, 5-H*), 5.01 (dd, 2
J = 1.6 Hz, 3
J = 17.4 Hz,
1 H, 2′-H), 5.02 (dd, 2
J = 1.6 Hz, 3
J = 11.1 Hz,
1 H, 2′-H), 5.67 (dd, 3
J = 11.1 Hz, 3
J = 17.4 Hz,
1 H, 1′-H). 13C NMR (62.9 MHz,
CDCl3, DEPT): δ = 27.0
(-, C-2*), 29.4 (-,
C-3*),
30.8 (-, C-6), 32.4 (-, C-4*), 32.5 (-,
C-5*), 33.8 (+, C-7), 34.7 (Cquat,
C-1), 45.2 (+, 2 C, CH3), 64.8 (+,
C-8), 111.1 (-, C-2′), 142.4 (+, C-1′).
MS (70 eV, EI): m/z (%) = 179 (30) [M+],
164 (21), 150 (18), 136(100), 122 (39) [M+ - C4H9],
108 (80) [M+ - C5H11],
84 (62), 71(45), 42 (100), 41 (49). Anal.
Calcd for C12H21N (179.3): C, 80.38; H, 11.81;
N, 7.81. Found: C,80.18; H, 11.74; N, 7.74.
(2,4,5,6,7,7a-Hexahydro-1
H
-inden-1-yl)dimethylamine
(7c): 1H NMR (250 MHz,
CDCl3): δ = 0.93-1.38
(m, 3 H, 4-H*, 5-H*), 1.69-1.80
(m, 2 H, 6-H*), 1.80-1.98 (m, 1 H, 7-H*),
1.98-2.17 (m, 1 H, 7-H*), 2.17-2.45
(m, 4 H, 1-H, 2-H, 4-H), 2.23 (s, 6 H,
CH3), 2.55-2.64 (m, 1 H, 7a-H), 5.15
(mc, 1 H, 3-H). 13C
NMR (62.9 MHz, CDCl3, DEPT): δ = 26.1
(-, C-6), 26.9 (-, C-5), 29.2 (-, C-4),
35.4 (-,
C-2), 35.5 (-, C-7), 43.3 (+,
2 C, CH3), 48.5 (+, C-7a), 73.2 (+,
C-1), 118.3 (+, C-3), 144.8 (Cquat, C-3a). MS (70 eV,
EI): m/z (%) = 165 (100) [M+],
150 (42), 136 (51), 122 (23), 108 (15),
91 (24), 84 (41), 70 (33), 58 (19),
42 (26). Anal. Calcd for C11H19N (165.3): C,
79.94; H, 11.59; N, 8.47. Found: C, 79.85; H, 11.57;
N, 8.35.
4,5,6,7-Tetrahydro-1
H
-indene(11c) and 4,5,6,7-Tetrahydro-2
H
-indene
(12c): 11c: 1H NMR
see ref.11.
13C
NMR (62.9 MHz, CDCl3, DEPT): δ = 23.1
(-, C-4*), 23.3 (-, C-5*), 24.4
(-, C-6*), 25.3 (-, C-7*), 34.1
(-, C-1), 129.8 (+, C-2), 134.5 (+, C-3),
137.9 (Cquat, C-3a*), 139.2 (Cquat,
C-7a*). 12c: 1H
NMR (250 MHz, CDCl3): δ = 1.58-1.80 [m,
4 H, 5(6)-H], 2.47-2.58 [m,
4 H, 4(7)-H], 2.72-2.80 (m,
2 H, 2-H), 5.97 [mc, 2 H,
1(3)-H]. 13C NMR (62.9 MHz,
CDCl3, DEPT): δ = 24.4 [-,
C-4(7)], 25.7 [-,
C-5(6)],
39.7 (-, C-2), 125.1 [+, C-1(3)].
The signals of the quaternary carbon atoms C-3a and C-7a were not
visible because of the low concentration of 12c.
The structure of the by-products could not unambiguously be determined.