References
1a
Kushwaha SC.
Kates M.
Sprott GD.
Smith ICP.
Biochim. Biophys. Acta
1981,
664:
156
1b
Comita PB.
Gagosian RB.
Pang H.
Costello CE.
J.
Biol. Chem.
1984,
254:
15234
1c
Eguchi T.
Arakawa K.
Terachi T.
Kakinuma K.
J. Org. Chem.
1997,
62:
1924
1d
Eguchi T.
Ibaragi K.
Kakinuma K.
J.
Org. Chem.
1998,
63:
2689
1e
Aoki T.
Poulter CD.
J. Org. Chem.
1985,
50:
5634
2a
Menger FM.
Chen XY.
Tetrahedron
Lett.
1996,
37:
323
2b
Menger FM.
Chen XF.
Brocchini S.
Hopkins HP.
Hamilton D.
J. Am. Chem. Soc.
1993,
115:
6600
2c
Yamauchi K.
Sakamoto Y.
Moriya A.
Yamada K.
Hosokawa T.
Higuchi T.
Kinoshita M.
J.
Am. Chem. Soc.
1990,
112:
3188
2d
Moss RA.
Li JM.
J.
Am. Chem. Soc.
1992,
114:
9227
2e
Fuhrhop J.-H.
David HH.
Mathieu L.
Liman U.
Winter HJ.
Boekema E.
J. Am. Chem. Soc.
1986,
108:
1785
2f
Meglio CD.
Rananavare SB.
Svenson S.
Thompson DH.
Langmuir
2000,
16:
128
2g
Kim JM.
Thompson DH.
Langmuir
1992,
8:
637
2h
Ladika M.
Fisk TE.
Wu WW.
Jons SD.
J. Am. Chem. Soc.
1994,
116:
12093
2i
Patwarahan AP.
Thompson DH.
Org.
Lett.
1999,
1:
241
3a
Schnur JM.
Science
1993,
262:
1669
3b
Spector MS.
Price RR.
Schnur JM.
Adv. Mater.
1999,
11:
337
3c
Schnur JM.
Ratna BR.
Selinger JV.
Singh A.
Jyothi G.
Easwaran RK.
Science
1994,
264:
945
3d
Selinger JV.
Schnur JM.
Phys.
Rev. Lett.
1993,
71:
4091
3e
Spector MS.
Selinger JV.
Singh A.
Rodriguez JM.
Price RP.
Schnur JM.
Langmuir
1998,
14:
3493
4a Amphiphilic
molecules containing a polar head group at the end of a hydrophobic
segment have been termed ‘bolaamphiphiles’: Fuhrhop J.-H.
Mathiewu J.
Angew. Chem.,
Int. Ed. Engl.
1984,
23:
100
4b Also termed ‘bolaphile’: Jayasuriya N.
Bosak S.
Regen SL.
J. Am. Chem. Soc.
1990,
112:
5844
4c While amphiphiles having a
macrocyclic ring as a hydrophobic segment have been termed ‘macrocyclic
bolaamphiphiles’ (see Ref.
[2a]
),
we prefer to adopt the abbreviated and more readily pronounceable
term, ‘cyclobolaphile’.
5a We
term caldarchaeol with a parallel arrangement of glycerol units ‘parallel
caldarchaeol’, and that with an antiparallel arrangement ‘antiparallel
caldarchaeol’: Gräther O.
Arigoni D.
J. Chem. Soc., Chem. Commun.
1995,
405
5b
Nishihara M.
Morii H.
Koga Y.
J. Biochem.
1987,
101:
1007
6 Intense examination of macrocyclic
synthetic methods that have been previously reported indicates that
only our strategy has the potential to provide three stereoisomers
of parallel cyclobolaphiles that contain diacetylene units (see Ref.
[1c]
[d]
[2]
).
7
Qin D.
Byun H.
Bittman R.
J. Am. Chem.
Soc.
1999,
121:
662
8
Carvalho JF.
Prestwich GD.
J. Org. Chem.
1984,
49:
1251
9
Hirth G.
Barner R.
Helv. Chim. Acta
1982,
65:
1059
10
Oikawa Y.
Yoshioka T.
Yonemitsu O.
Tetrahedron
Lett.
1982,
23:
885
11 All new compounds gave satisfactory
analytical and spectral data. Selected physical data are as follows: 4: Stage yellow oil, Rf = 0.55 [hexane/ethyl
acetate (2:1, v/v)], [α]D
28 -1.67 (c 0.24, CHCl3). 1H
NMR (500 MHz, CDCl3): δ = 7.45-7.39 (m,
12 H), 7.27-7.19 (m, 18 H), 7.16 (d, J = 8.8
Hz, 4 H), 6.81 (d, J = 8.5
Hz, 4 H), 4.44 (d, J = 11.6
Hz, 2 H), 4.40 (d, J = 11.9
Hz, 2 H), 3.77 (s, 6 H), 3.56-3.49 (m, 10 H), 3.17 (d, J = 4.6 Hz,
4 H), 2.19 (t, J = 7.2
Hz, 4 H), 1.56-1.44 (m, 8 H), 1.34-1.24 (m, 16
H) ppm. 13C NMR (100 MHz, CDCl3): δ = 159.06,
144.09, 130.48, 129.13, 128.72, 127.70, 126.87, 113.62, 86.48, 78.29,
77.52, 72.87, 70.60, 70.09, 65.22, 63.44, 55.24, 30.06, 29.33, 29.07,
28.82, 28.32, 26.10, 19.17 ppm. Anal. Calcd for C80H90O8:
C, 81.46; H, 7.69%. Found: C, 81.43; H, 7.66%. 8: Stage pale yellow oil, Rf = 0.13 [hexane/ethyl
acetate (2:1, v/v)], [α]D
28 -9.80
(c 0.60, CHCl3). 1H
NMR (500 MHz, CDCl3): δ = 3.72-3.48 (m,
18 H), 2.23 (t, J = 6.9
Hz, 8 H), 2.17 (brs, 2 H), 1.65-1.42 (m, 16 H), 1.40-1.19
(m, 32 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 78.44,
77.41, 71.60, 71.08, 70.34, 65.31, 62.90, 29.95, 29.46, 29.26, 29.10,
28.93, 28.58, 28.19, 25.93, 19.11 ppm. LRMS (FAB): m/z = 725 [(M + H)+]. Anal.
Calcd for C46H76O6: C, 76.20; H,
10.56%. Found: C, 76.19; H, 10.81%. 10: [α]D
28 +9.67
(c 0.30, CHCl3). 15: [α]D
28 0.00
(c 0.45, CHCl3). (2R,27R)-1: Stage pale yellow solid, Rf = 0.1 [CHCl3/MeOH/H2O
(65:25:4, v/v/v)]. [α]D
28 +5.81
(c 0.75, MeOH). 1H
NMR [500 MHz, CDCl3/CD3OD (97:3,
v/v)]: δ = 4.24 (brs, 4 H),
3.84 (t, J = 5.3
Hz, 4 H), 3.65 (brs, 4 H), 3.58-3.51 (m, 8 H), 3.43-3.37
(m, 6 H), 3.24 (s, 18 H), 2.21 (t, J = 6.7
Hz, 8 H), 1.49-1.43 (m, 16 H), 1.34-1.20 (m, 32
H) ppm. 13C NMR (125 MHz, CD3OD):
δ = 79.50,
77.97, 72.46, 72.01, 71.49, 67.47, 66.57, 66.20, 60.37, 54.69, 31.21,
30.78, 30.41, 30.24, 29.98, 29.83, 29.58, 27.29, 19.79 ppm. 31P
NMR [200 MHz, CDCl3/CD3OD
(99:1, v/v)]: δ = -0.50
(s)ppm. LRMS (FAB): m/z = 1054
(M+), 995 [(M - (Me)3N)+].
Anal. Calcd for C56H100N2O12P2·2
H2O: C, 61.63; H, 9.60; N, 2.57%. Found: C,
61.59; H, 9.43; N, 2.56%. (2S,27S)-1: [α]D
28 -5.77
(c 0.70, MeOH). (2R,27S)-1: [α]D
28 +0.00
(c 0.37, MeOH). The spectral
data of (2R,27S)-1 and (2S,27S)-1 were identical with
those of (2R,27R)-1.
12
Hansen WJ.
Murari R.
Wedmid Y.
Baumann WJ.
Lipids
1982,
17:
453
13
Alami M.
Ferri F.
Tetrahedron Lett.
1996,
37:
2763