RSS-Feed abonnieren
DOI: 10.1055/s-2002-32987
Efficient Synthesis of Parallel Cyclobolaphiles Having Two Diacetylenes: Mimetics of Archaeal Membrane Lipids
Publikationsverlauf
Publikationsdatum:
25. Juli 2002 (online)

Abstract
Chiral 48-membered parallel cyclobolaphiles and their diastereomer having two diacetylenes were efficiently synthesized by utilizing both the selective deprotection and the cross-coupling method of two distinct acetylenic compounds.
Key words
archaeal lipid - diacetylene - chirality - parallel cyclobolaphile - mimetics
-
1a
Kushwaha SC.Kates M.Sprott GD.Smith ICP. Biochim. Biophys. Acta 1981, 664: 156 -
1b
Comita PB.Gagosian RB.Pang H.Costello CE. J. Biol. Chem. 1984, 254: 15234 -
1c
Eguchi T.Arakawa K.Terachi T.Kakinuma K. J. Org. Chem. 1997, 62: 1924 -
1d
Eguchi T.Ibaragi K.Kakinuma K. J. Org. Chem. 1998, 63: 2689 -
1e
Aoki T.Poulter CD. J. Org. Chem. 1985, 50: 5634 -
2a
Menger FM.Chen XY. Tetrahedron Lett. 1996, 37: 323 -
2b
Menger FM.Chen XF.Brocchini S.Hopkins HP.Hamilton D. J. Am. Chem. Soc. 1993, 115: 6600 -
2c
Yamauchi K.Sakamoto Y.Moriya A.Yamada K.Hosokawa T.Higuchi T.Kinoshita M. J. Am. Chem. Soc. 1990, 112: 3188 -
2d
Moss RA.Li JM. J. Am. Chem. Soc. 1992, 114: 9227 -
2e
Fuhrhop J.-H.David HH.Mathieu L.Liman U.Winter HJ.Boekema E. J. Am. Chem. Soc. 1986, 108: 1785 -
2f
Meglio CD.Rananavare SB.Svenson S.Thompson DH. Langmuir 2000, 16: 128 -
2g
Kim JM.Thompson DH. Langmuir 1992, 8: 637 -
2h
Ladika M.Fisk TE.Wu WW.Jons SD. J. Am. Chem. Soc. 1994, 116: 12093 -
2i
Patwarahan AP.Thompson DH. Org. Lett. 1999, 1: 241 -
3a
Schnur JM. Science 1993, 262: 1669 -
3b
Spector MS.Price RR.Schnur JM. Adv. Mater. 1999, 11: 337 -
3c
Schnur JM.Ratna BR.Selinger JV.Singh A.Jyothi G.Easwaran RK. Science 1994, 264: 945 -
3d
Selinger JV.Schnur JM. Phys. Rev. Lett. 1993, 71: 4091 -
3e
Spector MS.Selinger JV.Singh A.Rodriguez JM.Price RP.Schnur JM. Langmuir 1998, 14: 3493 -
4a Amphiphilic
molecules containing a polar head group at the end of a hydrophobic
segment have been termed ‘bolaamphiphiles’:
Fuhrhop J.-H.Mathiewu J. Angew. Chem., Int. Ed. Engl. 1984, 23: 100 -
4b Also termed ‘bolaphile’:
Jayasuriya N.Bosak S.Regen SL. J. Am. Chem. Soc. 1990, 112: 5844 -
4c
While amphiphiles having a macrocyclic ring as a hydrophobic segment have been termed ‘macrocyclic bolaamphiphiles’ (see Ref. [2a] ), we prefer to adopt the abbreviated and more readily pronounceable term, ‘cyclobolaphile’.
-
5a We
term caldarchaeol with a parallel arrangement of glycerol units ‘parallel
caldarchaeol’, and that with an antiparallel arrangement ‘antiparallel
caldarchaeol’:
Gräther O.Arigoni D. J. Chem. Soc., Chem. Commun. 1995, 405 -
5b
Nishihara M.Morii H.Koga Y. J. Biochem. 1987, 101: 1007 - 7
Qin D.Byun H.Bittman R. J. Am. Chem. Soc. 1999, 121: 662 - 8
Carvalho JF.Prestwich GD. J. Org. Chem. 1984, 49: 1251 - 9
Hirth G.Barner R. Helv. Chim. Acta 1982, 65: 1059 - 10
Oikawa Y.Yoshioka T.Yonemitsu O. Tetrahedron Lett. 1982, 23: 885 - 12
Hansen WJ.Murari R.Wedmid Y.Baumann WJ. Lipids 1982, 17: 453 - 13
Alami M.Ferri F. Tetrahedron Lett. 1996, 37: 2763
References
Intense examination of macrocyclic synthetic methods that have been previously reported indicates that only our strategy has the potential to provide three stereoisomers of parallel cyclobolaphiles that contain diacetylene units (see Ref. [1c] [d] [2] ).
11All new compounds gave satisfactory
analytical and spectral data. Selected physical data are as follows: 4: Stage yellow oil, Rf = 0.55 [hexane/ethyl
acetate (2:1, v/v)], [α]D
28 -1.67 (c 0.24, CHCl3). 1H
NMR (500 MHz, CDCl3): δ = 7.45-7.39 (m,
12 H), 7.27-7.19 (m, 18 H), 7.16 (d, J = 8.8
Hz, 4 H), 6.81 (d, J = 8.5
Hz, 4 H), 4.44 (d, J = 11.6
Hz, 2 H), 4.40 (d, J = 11.9
Hz, 2 H), 3.77 (s, 6 H), 3.56-3.49 (m, 10 H), 3.17 (d, J = 4.6 Hz,
4 H), 2.19 (t, J = 7.2
Hz, 4 H), 1.56-1.44 (m, 8 H), 1.34-1.24 (m, 16
H) ppm. 13C NMR (100 MHz, CDCl3): δ = 159.06,
144.09, 130.48, 129.13, 128.72, 127.70, 126.87, 113.62, 86.48, 78.29,
77.52, 72.87, 70.60, 70.09, 65.22, 63.44, 55.24, 30.06, 29.33, 29.07,
28.82, 28.32, 26.10, 19.17 ppm. Anal. Calcd for C80H90O8:
C, 81.46; H, 7.69%. Found: C, 81.43; H, 7.66%. 8: Stage pale yellow oil, Rf = 0.13 [hexane/ethyl
acetate (2:1, v/v)], [α]D
28 -9.80
(c 0.60, CHCl3). 1H
NMR (500 MHz, CDCl3): δ = 3.72-3.48 (m,
18 H), 2.23 (t, J = 6.9
Hz, 8 H), 2.17 (brs, 2 H), 1.65-1.42 (m, 16 H), 1.40-1.19
(m, 32 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 78.44,
77.41, 71.60, 71.08, 70.34, 65.31, 62.90, 29.95, 29.46, 29.26, 29.10,
28.93, 28.58, 28.19, 25.93, 19.11 ppm. LRMS (FAB): m/z = 725 [(M + H)+]. Anal.
Calcd for C46H76O6: C, 76.20; H,
10.56%. Found: C, 76.19; H, 10.81%. 10: [α]D
28 +9.67
(c 0.30, CHCl3). 15: [α]D
28 0.00
(c 0.45, CHCl3). (2R,27R)-1: Stage pale yellow solid, Rf = 0.1 [CHCl3/MeOH/H2O
(65:25:4, v/v/v)]. [α]D
28 +5.81
(c 0.75, MeOH). 1H
NMR [500 MHz, CDCl3/CD3OD (97:3,
v/v)]: δ = 4.24 (brs, 4 H),
3.84 (t, J = 5.3
Hz, 4 H), 3.65 (brs, 4 H), 3.58-3.51 (m, 8 H), 3.43-3.37
(m, 6 H), 3.24 (s, 18 H), 2.21 (t, J = 6.7
Hz, 8 H), 1.49-1.43 (m, 16 H), 1.34-1.20 (m, 32
H) ppm. 13C NMR (125 MHz, CD3OD):
δ = 79.50,
77.97, 72.46, 72.01, 71.49, 67.47, 66.57, 66.20, 60.37, 54.69, 31.21,
30.78, 30.41, 30.24, 29.98, 29.83, 29.58, 27.29, 19.79 ppm. 31P
NMR [200 MHz, CDCl3/CD3OD
(99:1, v/v)]: δ = -0.50
(s)ppm. LRMS (FAB): m/z = 1054
(M+), 995 [(M - (Me)3N)+].
Anal. Calcd for C56H100N2O12P2·2
H2O: C, 61.63; H, 9.60; N, 2.57%. Found: C,
61.59; H, 9.43; N, 2.56%. (2S,27S)-1: [α]D
28 -5.77
(c 0.70, MeOH). (2R,27S)-1: [α]D
28 +0.00
(c 0.37, MeOH). The spectral
data of (2R,27S)-1 and (2S,27S)-1 were identical with
those of (2R,27R)-1.