Zusammenfassung
Durch umfangreiche klinische und grundlagenwissenschaftliche Untersuchungen konnte die zentrale Rolle des Tumornekrosefaktors-α für die Pathogenese chronisch entzündlicher Erkrankungen wie der chronisch entzündlichen Darmerkrankungen nachgewiesen werden. Dieses hat zur Entwicklung viel versprechender therapeutischer Anti-TNF-Strategien geführt. Es gibt zunehmend Hinweise, dass TNF-α auch eine Schlüsselrolle bei anderen gastrointestinalen Erkrankungen spielt wie Helicobacter-pylori-Infektionen, Pankreatitis, Virushepatitis und toxischen Leberschäden. Die Wirkung von TNF-α auf zellulärer Ebene wird durch zwei Zelloberflächenrezeptoren, TNF-R1 (p60) und TNF-R2 (p80), vermittelt. Die Funktion dieser Rezeptoren und die folgenden intrazellulären Signaltransduktionswege sind eingehend in In-vitro -Systemen untersucht worden. Es ist zu erwarten, dass es besonders kritische Schritte in der TNF-Signaltransduktion gibt, die bei diesen Krankheiten fehlreguliert sind. Die Aufdeckung dieser möglichen Fehlregulationen könnte zu einem besseren Verständnis der Pathogenese dieser Krankheiten, vor allem der chronisch entzündlichen Darmerkrankungen, beitragen und möglicherweise neue, spezifischere therapeutische Ansatzpunkte liefern. Ziel dieser Arbeit ist es, eine Übersicht über den gegenwärtigen Kenntnisstand zur TNF-Signaltransduktion bei ausgewählten gastrointestinalen Erkrankungen unter besonderer Berücksichtigung der chronisch entzündlichen Darmerkrankungen zu geben. Schließlich sollen die Implikationen für zukünftige Forschungsrichtungen diskutiert werden.
Abstract
As a result of extensive clinical and basic research, the pivotal role of tumour necrosis factor (TNF) in the pathogenesis of chronic inflammatory diseases such as inflammatory bowel disease (IBD) has now generally been acknowledged. This has led to promising clinically effective anti-TNF-strategies. Of note, there is more and more evidence that TNF seems to play a key role in other gastrointestinal diseases including Helicobacter pylori infection, pancreatitis, viral hepatitis and toxic liver damage, too. The action of TNF at the cellular level is mediated by two cell surface receptors, TNF-R1 (p60) and TNF-R2 (p80). The function of these receptors and the downstream intracellular signal transduction pathway have been extensively studied in vitro and it can be expected, that there are critically important steps in TNF-signal transduction that might be dysregulated in these disease states. Their elucidation could lead to a better understanding of the pathogenesis of these diseases, in particular IBD and potentially reveal new, more specific therapeutic targets. Objective of this review is to give an overview about the current knowledge on TNF signal transduction in relationship to selected examples of important gastrointestinal disorders with special focus on IBD. Finally, the implications for future research efforts will be discussed.
Schlüsselwörter
TNF-Signaltransduktion - gastrointestinale Erkrankungen - chronisch entzündliche Darmerkrankungen
Key words
TNF-α - Signal Transduction - Gastrointestinal Disorders - Inflammatory Bowel Disease
References
1
Aversa G, Punnonen J, de Vries J E.
The 26-kD transmembrane form of tumor necrosis factor alpha on activated CD4+ T cell clones provides a costimulatory signal for human B cell activation.
J Exp Med.
1993;
177 (no. 6)
1575
2
Tang P, Hung M C, Klostergaard J.
Himan pro-tumor necrosis factor is a homotrimer.
Biochemstry.
1996;
35 (no. 25)
8216
3
Beutler B, Van Huffel C.
An evolutionary and functional approach to the TNF receptor/ligand family.
Ann N Y Acad Sci.
1994;
730
118
4
Spies T, Blanck G, Bresnahan M, Sands J, Strominger J L.
A new cluster of genes within the human major histocompatibility complex.
Science.
1989;
243 (no. 4888)
214
5
Black R A, Rauch C T, Kozlosky C J. et al .
A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells.
Nature.
1997;
385 (no. 6618)
729
6
Moss M L, Jin S L, Milla M E. et al .
Cloning of a disintegrin metalloproteinase that processes precursor tumour-necrosis factor-alpha.
Nature.
1997;
385 (no. 6618)
733
7
Perez C, Albert I, DeFay K. et al .
A nonsecretable cell surface mutant of tumor necrosis factor (TNF) kills by cell-to-cell contact.
Cell.
1990;
63 (no. 2)
251
8
Eck M J, Beutler B, Kuo G, Merryweather J P, Sprang S R.
Crystallization of trimeric recombinant human tumor necrosis factor (cachectin).
J Biol Chem.
198;
263 (no. 26)
12816
9
Han J, Thompson P, Beutler B.
Dexamethasone and pentoxifylline inhibit endotoxin-induced cachectin/tumor necrosis factor synthesis at separate points in the signaling pathway.
J Exp Med.
1990;
172 (no. 1)
391
10
Caput D, Beutler B, Hartog K. et al .
Identification of a common nucleotide sequence in the 3’-untranslated region of mRNA molecules specifying inflammatory mediators.
Proc Natl Acad Sci U S A.
1986;
83 (no. 6)
1670
11
Brockhaus M, Schoenfeld H J, Schlaeger E J. et al .
Identification of two types of tumor necrosis factor receptors on human cell lines by monoclonal antibodies.
Proc Natl Acad Sci U S A.
1990;
87 (no. 8)
3127
12
Schall T J, Lewis M, Koller K J. et al .
Molecular cloning and expression of a receptor for human tumor necrosis factor.
Cell.
1990;
61 (no. 2)
361
13
Baker E, Chen L Z, Smith C A. et al .
Chromosomal location of the human tumor necrosis factor receptor genes.
Cytogenet Cell Genet.
1991;
57 (no. 2-3)
117
14
Fuchs P, Strehl S, Dworzak M, Himmler A, Ambros P F.
Structure of the human TNF receptor 1 (p60) gene (TNFR1) and localization to chromosome 12p13 [corrected].
Genomics.
1992;
13 (no. 1)
219
15
Thoma B, Grell M, Pfizenmaier K, Scheurich P.
Identification of a 60-kD tumor necrosis factor (TNF) receptor as the major signal transducing component in TNF responses.
J Exp Med.
1990;
172 (no. 4)
1019
16
Grell M, Douni E, Wajant H. et al .
The transmembrane form of tumor necrosis factor is the prime activating ligand of the 80 kDa tumor necrosis factor receptor.
Cell.
1995;
83 (no. 5)
793
17
Weiss T, Grell M, Hessabi B. et al .
Enhancement of TNF receptor p60-mediated cytotoxicity by TNF receptor p80: requirement of the TNF receptor-associated factor-2 binding site.
J Immunol.
1997;
158 (no. 5)
2398
18
Haas E, Grell M, Wajant H, Scheurich P.
Continuous autotropic signaling by membrane-expressed tumor necrosis factor.
J Biol Chem.
1999;
274 (no. 25)
18107
19
Alexopoulou L, Pasparakis M, Kollias G.
A murine transmembrane tumor necrosis factor (TNF) transgene induces arthritis by cooperative p55/p75 TNF receptor signaling.
Eur J Immunol.
1997;
27 (no. 10)
2588
20
Arch R H, Gedrich R W, Thompson C B.
Tumor necrosis factor receptor-associated factors (TRAFs) - a family of adapter proteins that regulates life and death.
Genes Dev.
1998;
12 (no. 18)
2821
21
Chinnaiyan A M, O’Rourke K, Tewari M, Dixit V M.
FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis.
Cell.
1995;
81 (no. 4)
505
22
Hsu H, Xiong J, Goeddel D V.
The TNF receptor 1-associated protein TRADD signals cell death and NF- kappa B activation.
Cell.
1995;
81 (no. 4)
495
23
Hsu H, Shu H B, Pan M G, Goeddel D V.
TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways.
Cell.
1996;
84 (no. 2)
299
24
Engelmann H, Holtmann H, Brakebusch C. et al .
Antibodies to a soluble form of a tumor necrosis factor (TNF) receptor have TNF-like activity.
J Biol Chem.
1990;
265 (no. 24)
14497
25
Banner D W, D’Arcy A, Janes W. et al .
Crystal structure of the soluble human 55 kd TNF receptor-human TNF beta complex: implications for TNF receptor activation.
Cell.
1993;
73 (no. 3)
431
26
Bazzoni F, Alejos E, Beutler B.
Chimeric tumor necrosis factor receptors with constitutive signaling activity.
Proc Natl Acad Sci USA.
1995;
92 (no. 12)
5376
27
Rothe M, Wong S C, Henzel W J, Goeddel D V.
A novel family of putative signal transducers associated with the cytoplasmic domain of the 75 kDa tumor necrosis factor receptor.
Cell.
1994;
78 (no. 4)
681
28
Takeuchi M, Rothe M, Goeddel D V.
Anatomy of TRAF2. Distinct domains for nuclear factor-kappaB activation and association with tumor necrosis factor signaling proteins.
J Biol Chem.
1996;
271 (no. 33)
19935
29
Auphan N, DiDonato J A, Rosette C, Helmberg A, Karin M.
Immunosuppression by glucocorticoids: inhibition of NF-kappa B activity through induction of I kappa B synthesis.
Science.
1995;
270 (no. 5234)
286
30
Neurath M F, Becker C, Barbulescu K.
Role of NF-kappaB in immune and inflammatory responses in the gut.
Gut.
1998;
43 (no. 6)
856
31
Yin M J, Yamamoto Y, Gaynor R B.
The anti-inflammatory agents aspirin and salicylate inhibit the activity of I(kappa)B kinase-beta.
Nature.
1998;
396 (no. 6706)
77
32
Wang C Y, Mayo M W, Korneluk R G, Goeddel D V, Baldwin A S Jr.
NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c- IAP2 to suppress caspase-8 activation.
Science.
1998;
281 (no. 5383)
1680
33
Rothe M, Xiong J, Shu H B, Williamson K, Goddard A, Goeddel D V.
I-TRAF is a novel TRAF-interacting protein that regulates TRAF-mediated signal transduction.
Proc Natl Acad Sci U S A.
1996;
93 (no. 16)
8241
34
Opipari A W Jr, Boguski M S, Dixit V M.
The A20 cDNA induced by tumor necrosis factor alpha encodes a novel type of zinc finger protein.
J Biol Chem.
1990;
265(no. 25)
14705
35
Song H Y, Rothe M, Goeddel D V.
The tumor necrosis factor-inducible zinc finger protein A20 interacts with TRAF1/TRAF2 and inhibits NF-kappaB activation.
Proc Natl Acad Sci U S A.
1996;
93 (no. 13)
6721
36
Darnay B G, Singh S, Aggarwal B B.
The p80 TNF receptor-associated kinase (p80TRAK) associates with residues 354 - 397 of the p80 cytoplasmic domain: similarity to casein kinase.
FEBS Lett.
1997;
406 (no. 1-2)
101
37
Darnay B G, Reddy S A, Aggarwal B B.
Identification of a protein kinase associated with the cytoplasmic domain of the p60 tumor necrosis factor receptor.
J Biol Chem.
1994;
269 (no. 32)
20299
38
Tartaglia L A, Ayres T M, Wong G H, Goeddel D V.
A novel domain within the 55 kd TNF receptor signals cell death.
Cell.
1993;
74 (no. 5)
845
39
Boldin M P, Varfolomeev E E, Pancer Z. et al .
A novel protein that interacts with the death domain of Fas/APO1 contains a sequence motif related to the death domain.
J Biol Chem.
1995;
270 (no. 14)
7795
40
Stanger B Z, Leder P, Lee T H, Kim E, Seed B.
RIP: a novel protein containing a death domain that interacts with Fas/APO-1 (CD95) in yeast and causes cell death.
Cell.
1995;
81 (no. 4)
513
41
Hsu H, Huang J, Shu H B, Baichwal V, Goeddel D V.
TNF-dependent recruitment of the protein kinase RIP to the TNF receptor- 1 signaling complex.
Immunity.
1996;
4 (no. 4)
387
42
Yeh W C, Pompa J L, McCurrach M E. et al .
FADD: essential for embryo development and signaling from some, but not all, inducers of apoptosis.
Science.
1998;
279 (no. 5358)
1954
43
Muzio M, Chinnaiyan A M, Kischkel F C. et al .
FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex.
Cell.
1996;
85 (no. 6)
817
44
Rothe M, Sarma V, Dixit V M, Goeddel D V.
TRAF2-mediated activation of NF-kappa B by TNF receptor 2 and CD40.
Science.
1995;
269 (no. 5229)
1424
45
Lee S Y, Kaufman D R, Mora A L. et al .
Stimulus-dependent synergism of the antiapoptotic tumor necrosis factor receptor-associated factor 2 (TRAF2) and nuclear factor kappaB pathways.
J Exp Med.
1998;
188 (no. 7)
1381
46
Yeh W C, Shahinian A, Speiser D. et al .
Early lethality, functional NF-kappaB activation, and increased sensitivity to TNF-induced cell death in TRAF2-deficient mice.
Immunity.
1997;
7 (no. 5)
715
47
Schutze S, Berkovic D, Tomsing O, Unger C, Kronke M.
Tumor necrosis factor induces rapid production of 1’2’diacylglycerol by a phosphatidylcholine-specific phospholipase C.
J Exp Med.
1991;
174 (no. 5)
975
48
Liu J, Mathias S, Yang Z, Kolesnick R N.
Renaturation and tumor necrosis factor-alpha stimulation of a 97-kDa ceramide-activated protein kinase.
J Biol Chem.
1994;
269 (no. 4)
3047
49
Blenis J.
Signal transduction via the MAP kinases: proceed at your own RSK.
Proc Natl Acad Sci U S A.
1993;
90 (no. 13)
5889
50 Beutler B. Tumor necrosis factors: the molecules and their emerging role in medicine. New York; Raven Press 1992
51
Tracey K J, Cerami A.
Tumor necrosis factor: a pleiotropic cytokine and therapeutic target.
Annu Rev Med.
1994;
45 (no. 9)
491
52
Carswell E A, Old L J, Kassel R L. et al .
An endotoxin-induced serum factor that causes necrosis of tumors.
Proc Natl Acad Sci U S A.
1975;
72
3666
53
Rothe J, Lesslauer W, Lotscher H. et al .
Mice lacking the tumour necrosis factor receptor 1 are resistant to TNF- mediated toxicity but highly susceptible to infection by Listeria monocytogenes.
Nature.
1993;
364 (no. 6440)
798
54
Marino M W, Dunn A, Grail D. et al .
Characterization of tumor necrosis factor-deficient mice.
Proc Natl Acad Sci USA.
1997;
94 (no. 15)
8093
55
Tracey K J, Cerami A.
Tumor necrosis factor, other cytokines and disease.
Annu Rev Cell Biol.
1993;
9 (no. 4)
317
56
Pasparakis M, Alexopoulou L, Episkopou V, Kollias G.
Immune and inflammatory responses in TNF alpha-deficient mice: a critical requirement for TNF alpha in the formation of primary B cell follicles, follicular dendritic cell networks and germinal centers, and in the maturation of the humoral immune response.
J Exp Med.
1996;
184
1397
57
Gamble J R, Harlan J M, Klebanoff S J, Vadas M A.
Stimulation of the adherence of neutrophils to umbilical vein endothelium by human recombinant tumor necrosis factor.
Proc Natl Acad Sci USA.
1985;
82 (no. 24)
8667
58
Carlos T M, Harlan J M.
Leukocyte-endothelial adhesion molecules.
Blood.
1994;
84 (no. 7)
2068
59
Kuijpers T W, Hakkert B C, Hart M H, Roos D.
Neutrophil migration across monolayers of cytokine-prestimulated endothelial cells: a role for platelet-activating factor and IL-8.
J Cell Biol.
1992;
117 (no. 3)
565
60
Paleolog E M, Delasalle S A, Buurman W A, Feldmann M.
Functional activities of receptors for tumor necrosis factor-alpha on human vascular endothelial cells.
Blood.
1994;
84 (no. 8)
2578
61
Levi M, ten C ate H, van der Poll T, van Deventer S J.
Pathogenesis of disseminated intravascular coagulation in sepsis.
Jama.
1993;
270 (no. 8)
975
62
van der Poll T, Levi M, Buller H R. et al .
Fibrinolytic response to tumor necrosis factor in healthy subjects.
J Exp Med.
1991;
174 (no. 3)
729
63
van der Poll T, Jansen J, van Leenen D. et al .
Release of soluble receptors for tumor necrosis factor in clinical sepsis and experimental endotoxemia.
J Infect Dis.
1993;
168 (no. 4)
955
64
Tracey K J.
Tumor necrosis factor (cachectin) in the biology of septic shock syndrome.
Circ Shock.
1991;
35 (no. 2)
123
65
Tracey K J, Fong Y, Hesse D G. et al .
Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteraemia.
Nature.
19987;
330 (no. 6149) (no. 3)
662
66
Abraham E, Anzueto A, Gutierrez G. et al .
Double-blind randomised controlled trial of monoclonal antibody to human tumour necrosis factor in treatment of septic shock. NORASEPT II Study Group.
Lancet.
1998;
351 (no. 9107)
929
67
Asher A, Mule J J, Reichert C M, Shiloni E, Rosenberg S A.
Studies on the anti-tumor efficacy of systemically administered recombinant tumor necrosis factor against several murine tumors in vivo.
J Immunol.
1987;
138
963
68
Lejeune F, Bauer J, Leyvraz S, Lienard D.
Disseminated melanoma, preclinical therapeutic studies, clinical trials, and patient treatment.
Curr Opin Oncol.
1993;
5 (no. 2)
390
69 Clauss M, Ryan J, Stern D. Modulation of endothelial cell hemostatic properties by TNF: Insight into the role endothelium in the host response to inflammatory stimuli. Beutler B Tumor Necrosis Factors: The Molecules and Their Emerging Role in Medicine New York; Raven Press 1992: 49 pp.
70
Nawroth P, Handley D, Matsueda G. et al .
Tumor necrosis factor/ cachectin-induced intravascular fibrin formation in meth A fibrosarcomas.
J Exp Med.
1988;
168 (no. 2)
637
71
Urban J L, Shepard H M, Rothstein J L, Sugarman B J, Schreiber H.
Tumor necrosis factor: a potent effector molecule for tumor cell killing by activated macrophages.
Proc Natl Acad Sci U S A.
1986;
83 (no. 14)
5233
72
Keffer J, Probert L, Cazlaris H. et al .
Transgenic mice expressing human tumour necrosis factor: a predictive genetic model of arthritis.
Embo J.
1991;
10 (no. 13) (no. 8930)
4025
73
Elliott M J, Maini R N, Feldmann M. et al .
Randomised double-blind comparison of chimeric monoclonal antibody to tumour necrosis factor alpha (cA2) versus placebo in rheumatoid arthritis.
Lancet.
1994;
344
1105
74
Moreland L W, Baumgartner S W, Schiff M H. et al .
Treatment of rheumatoid arthritis with a recombinant human tumor necrosis factor receptor (p75)-Fc fusion protein.
N Engl J Med.
1997;
337 (no. 3)
141
75
Le Hir M, Bluethmann H, Kosco-Vilbois M H. et al .
Tumor necrosis factor receptor-1 signaling is required for differentiation of follicular dendritic cells, germinal center formation, and full antibody responses.
J Inflamm.
1995;
47 (no. 1 - 2) (no. 4)
76
76
Pfeffer K, Matsuyama T, Kundig T M. et al .
Mice deficient for the 55 kd tumor necrosis factor receptor are resistant to endotoxic shock, yet succumb to L. monocytogenes infection.
Cell.
1993;
73 (no. 3)
457
77
Neumann B, Machleidt T, Lifka A. et al .
Crucial role of 55-kilodalton TNF receptor in TNF-induced adhesion molecule expression and leukocyte organ infiltration.
J Immunol.
1996;
156
1587
78
Erickson S L, de Sauvage F J, Kikly K. et al .
Decreased sensitivity to tumour-necrosis factor but normal T-cell development in TNF receptor-2-deficient mice.
Nature.
1994;
372 (no. 6506)
560
79
Lucas R, Juillard P, Decoster E. et al .
Crucial role of tumor necrosis factor (TNF) receptor 2 and membrane- bound TNF in experimental cerebral malaria.
Eur J Immunol.
1997;
27 (no. 7)
1719
80
Douni E, Kollias G.
A critical role of the p75 tumor necrosis factor receptor (p75TNF-R) in organ inflammation independent of TNF, lymphotoxin alpha, or the p55TNF- R.
J Exp Med.
1998;
188 (no. 7)
1343
81
Schroder J, Stuber F, Gallati H, Schade F U, Kremer B.
Pattern of soluble TNF receptors I and II in sepsis.
Infection.
1995;
23 (no. 3)
143
82
Marinos G, Naoumov N V, Rossol S. et al .
Tumor necrosis factor receptors in patients with chronic hepatitis B virus infection.
Gastroenterology.
1995;
108 (no. 5)
1453
83
de Beaux A C, Ross J A, Maingay J P, Fearon K C, Carter D C.
Proinflammatory cytokine release by peripheral blood mononuclear cells from patients with acute pancreatitis.
Br J Surg.
1996;
83 (no. 8)
1071
84
Gabay C, Cakir N, Moral F. et al .
Circulating levels of tumor necrosis factor soluble receptors in systemic lupus erythematosus are significantly higher than in other rheumatic diseases and correlate with disease activity.
J Rheumatol.
1997;
24 (no. 2)
303
85
Godfried M H, van der Poll T, Jansen J. et al .
Soluble receptors for tumour necrosis factor: a putative marker of disease progression in HIV infection.
Aids.
1993;
7 (no. 1)
33
86
Kusters S, Tiegs G, Alexopoulou L. et al .
In vivo evidence for a functional role of both tumor necrosis factor (TNF) receptors and transmembrane TNF in experimental hepatitis.
Eur J Immunol.
1997;
27 (no. 11)
2870
87
Moss S F, Legon S, Davies J, Calam J.
Cytokine gene expression in Helicobacter pylori associated antral gastritis.
Gut.
1994;
35 (no. 11)
1567
88
Crabtree J E, Shallcross Z M, Heatley R V, Wyatt J I.
Mucosal tumour necrosis factor alpha and interleukin-6 in patients with Helicobacter pylori associated gastritis.
Gut.
1991;
32 (no. 12)
1473
89
Ishihara S, Fukuda R, Fukumoto S.
Cytokine gene expression in the gastric mucosa: its role in chronic gastritis.
J Gastroenterol.
1996;
31 (no. 4)
485
90
Houghton J, Macera-Bloch L S, Harrison L, Kim K H, Korah R M.
Tumor necrosis factor alpha and interleukin 1beta up-regulate gastric mucosal Fas antigen expression in Helicobacter pylori infection.
Infect Immun.
2000;
68 (no. 3)
1189
91
Rudi J, Kuck D, Strand S. et al .
Involvement of the CD95 (APO-1/Fas) receptor and ligand system in Helicobacter pylori-induced gastric epithelial apoptosis.
J Clin Invest.
1998;
102 (no. 8)
1506
92
Santucci L, Fiorucci S, Giansanti M. et al .
Pentoxifylline prevents indomethacin induced acute gastric mucosal damage in rats: role of tumour necrosis factor alpha.
Gut.
1994;
35 (no. 7)
909
93
Hermann G E, Tovar C A, Rogers R C.
Induction of endogenous tumor necrosis factor-alpha: suppression of centrally stimulated gastric motility.
Am J Physiol.
1999;
276 (no. 1 Pt 2)
R59
94
Kiyama T, Onda M, Tokunaga A. et al .
The presence of tumor necrosis factor-alpha and its antibody in the sera of cachexic patients with gastrointestinal cancer.
Surg Today.
1994;
24 (no. 8)
759
95
Ohno M, Kato M, Nakamura T, Saitoh Y.
Gene expression for tumor necrosis factor alpha and its production in gastric cancer patients.
Jpn J Cancer Res.
1994;
85 (no. 10)
1029
96
Beutler B, van Huffel C.
Unraveling function in the TNF ligand and receptor families.
Science.
1994;
264 (no. 5159)
667
97
Norman J G, Fink G W, Denham W. et al .
Tissue-specific cytokine production during experimental acute pancreatitis. A probable mechanism for distant organ dysfunction.
Dig Dis Sci.
1997;
42 (no. 8) (no. 5)
1783
98
Blanchard 2nd J A, Barve S, Joshi-Barve S, Talwalker R, Gates Jr L K.
Cytokine production by CAPAN-1 and CAPAN-2 cell lines.
Dig Dis Sci.
2000;
45
927
99
Gukovskaya A S, Gukovsky I, Zaninovic V. et al .
Pancreatic acinar cells produce, release, and respond to tumor necrosis factor-alpha. Role in regulating cell death and pancreatitis.
J Clin Invest.
1997;
100 (no. 7) (no. 1)
1853
100
Lundberg A H, Eubanks 3rd J W, Henry J. et al .
Trypsin stimulates production of cytokines from peritoneal macrophages in vitro and in vivo.
Pancreas.
2000;
21
41
101
Steinle A U, Weidenbach H, Wagner M, Adler G, Schmid R M.
NF-kappaB/Rel activation in cerulein pancreatitis.
Gastroenterology.
1999;
116 (no. 2)
420
102
Ishizuka N, Yagui K, Tokuyama Y. et al .
Tumor necrosis factor alpha signaling pathway and apoptosis in pancreatic beta cells.
Metabolism.
1999;
48 (no. 12)
1485
103
Stephens L A, Thomas H E, Ming L. et al .
Tumor necrosis factor-alpha-activated cell death pathways in NIT-1 insulinoma cells and primary pancreatic beta cells.
Endocrinology.
1999;
140 (no. 7)
3219
104
Sheron N, Lau J, Daniels H. et al .
Increased production of tumour necrosis factor alpha in chronic hepatitis B virus infection.
J Hepatol.
1991;
12 (no. 2)
241
105
Larrea E, Garcia N, Qian C, Civeira M P, Prieto J.
Tumor necrosis factor alpha gene expression and the response to interferon in chronic hepatitis C.
Hepatology.
1996;
23 (no. 2)
210
106
Kallinowski B, Haseroth K, Marinos G. et al .
Induction of tumour necrosis factor (TNF) receptor type p55 and p75 in patients with chronic hepatitis C virus (HCV) infection.
Clin Exp Immunol.
1998;
111 (no. 2)
269
107
Gonzalez-Amaro R, Garcia-Monzon C, Garcia-Buey L. et al .
Induction of tumor necrosis factor alpha production by human hepatocytes in chronic viral hepatitis.
J Exp Med.
1994;
179 (no. 3)
841
108
Ruby J, Bluethmann H, Peschon J J.
Antiviral activity of tumor necrosis factor (TNF) is mediated via p55 and p75 TNF receptors.
J Exp Med.
1997;
186 (no. 9)
1591
109
Zhu N, Khoshnan A, Schneider R. et al .
Hepatitis C virus core protein binds to the cytoplasmic domain of tumor necrosis factor (TNF) receptor 1 and enhances TNF-induced apoptosis.
J Virol.
1998;
72 (no. 5)
3691
110
Marusawa H, Hijikata M, Chiba T, Shimotohno K.
Hepatitis C virus core protein inhibits Fas- and tumor necrosis factor alpha-mediated apoptosis via NF-kappaB activation.
J Virol.
1999;
73 (no. 6)
4713
111
Marusawa H, Hijikata M, Watashi K, Chiba T, Shimotohno K.
Regulation of Fas-mediated apoptosis by NF-kappaB activity in human hepatocyte derived cell lines.
Microbiol Immunol.
2001;
45 (no. 6)
483
112
Tai D I, Tsai S L, Chen Y M. et al .
Activation of nuclear factor kappaB in hepatitis C virus infection: implications for pathogenesis and hepatocarcinogenesis.
Hepatology.
2000;
31 (no. 3)
656
113
Bernal W, Moloney M, Underhill J, Donaldson P T.
Association of tumor necrosis factor polymorphism with primary sclerosing cholangitis.
J Hepatol.
1999;
30 (no. 2)
237
114
Cookson S, Constantini P K, Clare M. et al .
Frequency and nature of cytokine gene polymorphisms in type 1 autoimmune hepatitis.
Hepatology.
1999;
30 (no. 4)
851
115
Czaja A J, Cookson S, Constantini P K. et al .
Cytokine polymorphisms associated with clinical features and treatment outcome in type 1 autoimmune hepatitis.
Gastroenterology.
1999;
117 (no. 3)
645
116
Gordon M A, Oppenheim E, Camp N J. et al .
Primary biliary cirrhosis shows association with genetic polymorphism of tumour necrosis factor alpha promoter region.
J Hepatol.
1999;
31 (no. 2)
242
117
Grove J, Daly A K, Bassendine M F, Day C P.
Association of a tumor necrosis factor promoter polymorphism with susceptibility to alcoholic steatohepatitis.
Hepatology.
1997;
26 (no. 1)
143
118
Spengler U, Moller A, Jung M C. et al .
T lymphocytes from patients with primary biliary cirrhosis produce reduced amounts of lymphotoxin, tumor necrosis factor and interferon-gamma upon mitogen stimulation.
J Hepatol.
1992;
15 (no. 1 - 2)
129
119
Naveau S, Emilie D, Balian A. et al .
Plasma levels of soluble tumor necrosis factor receptors p55 and p75 in patients with alcoholic liver disease of increasing severity.
J Hepatol.
1998;
28 (no. 5)
778
120
Iimuro Y, Gallucci R M, Luster M I, Kono H, Thurman R G.
Antibodies to tumor necrosis factor alfa attenuate hepatic necrosis and inflammation caused by chronic exposure to ethanol in the rat.
Hepatology.
1997;
26 (no. 6)
1530
121
Hadziselimovic F, Emmons L R, Gallati H.
Soluble tumour necrosis factor receptors p55 and p75 in the urine monitor disease activity and the efficacy of treatment of inflammatory bowel disease.
Gut.
1995;
37 (no. 2)
260
122
Braegger C P, Nicholls S, Murch S H, Stephens S, MacDonald T T.
Tumour necrosis factor alpha in stool as a marker of intestinal inflammation.
Lancet.
1992;
339 (no. 8785)
89
123
Murch S H, Braegger C P, Walker-Smith J A, MacDonald T T.
Location of tumour necrosis factor alpha by immunohistochemistry in chronic inflammatory bowel disease.
Gut.
1993;
34 (no. 12)
1705
124
Reinecker H C, Steffen M, Witthoeft T. et al .
Enhanced secretion of tumour necrosis factor-alpha, IL-6, and IL-1 beta by isolated lamina propria mononuclear cells from patients with ulcerative colitis and Crohn’s disease.
Clin Exp Immunol.
1993;
94 (no. 1)
174
125
Reimund J M, Wittersheim C, Dumont S. et al .
Mucosal inflammatory cytokine production by intestinal biopsies in patients with ulcerative colitis and Crohn’s disease.
J Clin Immunol.
1996;
16 (no. 3)
144
126
Plevy S E, Landers C J, Prehn J. et al .
A role for TNF-alpha and mucosal T helper-1 cytokines in the pathogenesis of Crohn’s disease.
J Immunol.
1997;
159 (no. 12)
6276
127
Pender S L, Breese E J, Gunther U. et al .
Suppression of T cell-mediated injury in human gut by interleukin 10: role of matrix metalloproteinases.
Gastroenterology.
1998;
115 (no. 3)
573
128
Monteleone G, Biancone L, Marasco R. et al .
Interleukin 12 is expressed and actively released by Crohn’s disease intestinal lamina propria mononuclear cells.
Gastroenterology.
1997;
112 (no. 4)
1169
129
Monteleone G, MacDonald T T, Wathen N C, Pallone F, Pender S L.
Enhancing Lamina propria Th1 cell responses with interleukin 12 produces severe tissue injury.
Gastroenterology.
1999;
117 (no. 5)
1069
130
Elson C O, Sartor R B, Tennyson G S, Riddell R H.
Experimental models of inflammatory bowel disease.
Gastroenterology.
1995;
109 (no. 4)
1344
131
Neurath M F, Fuss I, Pasparakis M. et al .
Predominant pathogenic role of tumor necrosis factor in experimental colitis in mice.
Eur J Immunol.
1997;
27 (no. 7)
1743
132
Okayasu I, Hatakeyama S, Yamada M. et al .
A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice.
Gastroenterology.
1990;
98 (no. 3)
694
133
Kuhn R, Lohler J, Rennick D, Rajewsky K, Muller W.
Interleukin-10-deficient mice develop chronic enterocolitis.
Cell.
1993;
75 (no. 2)
263
134
Powrie F, Leach M W, Mauze S, Caddle L B, Coffman R L.
Phenotypically distinct subsets of CD4+ T cells induce or protect from chronic intestinal inflammation in C. B-17 scid mice.
Int Immunol.
1993;
5 (no. 11) (no. 5)
1461
135
Atreya R, Mudter J, Finotto S. et al .
Blockade of interleukin 6 trans signaling suppresses T-cell resistance against apoptosis in chronic intestinal inflammation: evidence in crohn disease and experimental colitis in vivo.
Nat Med.
2000;
6
583
137
Corazza N, Eichenberger S, Eugster H P, Mueller C.
Nonlymphocyte-derived tumor necrosis factor is required for induction of colitis in recombination activating gene (RAG)2(-/-) mice upon transfer of CD4(+)CD45RB(hi) T cells.
J Exp Med.
1999;
190 (no. 10)
1479
136
Kojouharoff G, Hans W, Obermeier F. et al .
Neutralization of tumour necrosis factor (TNF) but not of IL-1 reduces inflammation in chronic dextran sulphate sodium-induced colitis in mice.
Clin Exp Immunol.
1997;
107 (no. 2)
353
138
Kontoyiannis D, Pasparakis M, Pizarro T T, Cominelli F, Kollias G.
Impaired on/off regulation of TNF biosynthesis in mice lacking TNF AU- rich elements: implications for joint and gut-associated immunopathologies.
Immunity.
1999;
10 (no. 3)
387
139
Schreiber S, Heinig T, Thiele H G, Raedler A.
Immunoregulatory role of interleukin 10 in patients with inflammatory bowel disease.
Gastroenterology.
1995;
108 (no. 5)
1434
140
Sands B E, Bank S, Sninsky C A. et al .
Preliminary evaluation of safety and activity of recombinant human interleukin 11 in patients with active Crohn’s disease.
Gastroenterology.
1999;
117 (no. 1)
58
141
Sumer N, Palabiyikoglu M.
Induction of remission by interferon-alpha in patients with chronic active ulcerative colitis.
Eur J Gastroenterol Hepatol.
1995;
7 (no. 7)
597
142
Stack W A, Mann S D, Roy A J. et al .
Randomised controlled trial of CDP571 antibody to tumour necrosis factor-alpha in Crohn’s disease.
Lancet.
1997;
349
521
143
Evans R C, Clarke L, Heath P. et al .
Treatment of ulcerative colitis with an engineered human anti-TNFalpha antibody CDP571.
Aliment Pharmacol Ther.
1997;
11 (no. 6)
1031
144
Knight D M, Trinh H, Le J. et al .
Construction and initial characterization of a mouse-human chimeric anti-TNF antibody.
Mol Immunol.
1993;
30 (no. 16)
1443
145
Scallon B J, Moore M A, Trinh H, Knight D M, Ghrayeb J.
Chimeric anti-TNF-alpha monoclonal antibody cA2 binds recombinant transmembrane TNF-alpha and activates immune effector functions.
Cytokine.
1995;
7 (no. 3)
251
146
Siegel S A, Shealy D J, Nakada M T. et al .
The mouse/human chimeric monoclonal antibody cA2 neutralizes TNF in vitro and protects transgenic mice from cachexia and TNF lethality in vivo.
Cytokine.
1995;
7 (no. 1)
15
147
Lugering A, Schmidt M, Lugering N. et al .
Infliximab induces apoptosis in monocytes from patients with chronic active crohn’s disease by using a caspase-dependent pathway.
Gastroenterology.
2001;
121 (no. 5)
1145
148
van Dullemen H M, van Deventer S J, Hommes D W. et al .
Treatment of Crohn’s disease with anti-tumor necrosis factor chimeric monoclonal antibody (cA2).
Gastroenterology.
1995;
109 (no. 1)
129
149
Targan S R, Hanauer S B, van Deventer S J. et al .
A short-term study of chimeric monoclonal antibody cA2 to tumor necrosis factor alpha for Crohn’s disease. Crohn’s Disease cA2 Study Group.
N Engl J Med.
1997;
337 (no. 15) (no. 18)
1029
150
Present D H, Rutgeerts P, Targan S. et al .
Infliximab for the treatment of fistulas in patients with Crohn’s disease.
N Engl J Med.
1999;
340
1398
151 Schreiber S. et al .ACCENT I - Study (A Crohn’s Disease Clinical rial Evaluating Infliximab in a New Long Term Treatment Regimen). Presented at the United European Gastroenterology Week Amsterdam; Oct 6-10, 2001
152
Bickston S J, Lichtenstein G R, Arseneau K O, Cohen R B, Cominelli F.
The relationship between infliximab treatment and lymphoma in Crohn’s disease.
Gastroenterology.
1999;
117 (no. 6)
1433
153
Sandborn W J, Hanauer S B.
Antitumor necrosis factor therapy for inflammatory bowel disease: a review of agents, pharmacology, clinical results, and safety.
Inflamm Bowel Dis.
1999;
5 (no. 2)
119
154
Etanercept. Soluble tumor necrosis factor receptor, TNF receptor fusion protein, TNFR-Fc, TNF 001, Enbrel.
Drugs R & D.
1999;
1 (no. 5)
155
Sandborn W J, Hanauer S B, Katz S. et al .
Etanercept for active crohn’s disease: a randomized, double-blind, placebo-controlled trial.
Gastroenterology.
2001;
121
1088
156
van Denventer S JH.
Transmembrane TNF-alpha, Induction of Apoptosis, and the Efficacy of TNF-Targeting Therapies in Crohn’s Disease.
Gastroenterology.
2001;
121 (no. 4)
1239-1242
157
Holtmann M H, Douni E, Schütz M. et al .
Tumor necrosis factor-receptor 2 is upregulated on lamina propria mononuclear cells in Crohn’s disease and promotes experimental colitis in vivo.
submitted.
158
Reimund J M, Dumont S, Muller C D, Kenney J S. et al .
In vitro effects of oxpentifylline on inflammatory cytokine release in patients with inflammatory bowel disease.
Gut.
1997;
40
475
159
Bauditz J, Haemling J, Ortner M. et al .
Treatment with tumour necrosis factor inhibitor oxpentifylline does not improve corticosteroid dependent chronic active Crohn’s disease.
Gut.
1997;
40 (no. 4)
470
160
Siegmund B, Rieder F, Albrich S. et al .
Adenosine kinase inhibitor GP515 improves experimental colitis in mice.
J Pharmacol Exp Ther.
2001;
296 (no. 1)
99
161
Hartmann G, Bidlingmaier C, Siegmund B. et al .
Specific type IV phosphodiesterase inhibitor rolipram mitigates experimental colitis in mice.
J Pharmacol Exp Ther.
2000;
292 (no. 1)
22
162
Meierhofer C, Dunzendorfer S, Wiedermann C J.
Protein kinase C-dependent effects on leukocyte migration of thalidomide.
J Infect Dis.
1999;
180 (no. 1)
216
163
D’Amato R J, Loughnan M S, Flynn E, Folkman J.
Thalidomide is an inhibitor of angiogenesis.
Proc Natl Acad Sci U S A.
1994;
91 (no. 9)
4082
164
Moreira A L, Sampaio E P, Zmuidzinas A. et al .
Thalidomide exerts its inhibitory action on tumor necrosis factor alpha by enhancing mRNA degradation.
J Exp Med.
1993;
177 (no. 6)
1675
165
Ehrenpreis E D, Kane S V, Cohen L B, Cohen R D, Hanauer S B.
Thalidomide therapy for patients with refractory Crohn’s disease: an open-label trial.
Gastroenterology.
1999;
117 (no. 6)
1271
166
Vasiliauskas E A, Kam L Y, Abreu-Martin M T. et al .
An open-label pilot study of low-dose thalidomide in chronically active, steroid-dependent Crohn’s disease.
Gastroenterology.
1999;
117 (no. 6)
1278
167
Williams L M, Gibbons D L, Gearing A. et al .
Paradoxical effects of a synthetic metalloproteinase inhibitor that blocks both p55 and p75 TNF receptor shedding and TNF alpha processing in RA synovial membrane cell cultures.
J Clin Invest.
1996;
97 (no. 12)
2833
Martin H. Holtmann M.D.
Department of Medicine, Johannes-Gutenberg-University
Langenbeckstraße 1
55131 Mainz
Email: mholtman@mail.uni-mainz.de