Subscribe to RSS
DOI: 10.1055/s-2002-34225
Ceric Ammonium Nitrate/Pyridine: A Mild Reagent for the Selective Deprotection of Cyclic Acetals and Ketals in the Presence of Acid Labile Protecting Groups
Publication History
Publication Date:
23 September 2002 (online)
Abstract
The reagent system ceric ammonium nitrate/pyridine can perform the cleavage of primary and (in some cases) secondary acetonides, benzylidenes and tetrahydropyranyl ethers. The mild acididity of the reaction system (pH 4.4) allows deprotections to be performed in the presence of several acid labile protecting groups.
Key words
ceric ammonium nitrate - lanthanides - hydroxyl-protecting groups - hydrolysis - carbohydrates
- 1
Green TW.Wuts PGM. Protective Groups in Organic Synthesis 3rd ed.: Wiley-Interscience; New York: 1999. p.23 - 2
Guindon Y.Yoakim C.Morton HE. J. Org. Chem. 1984, 49: 3912 - 3
Lipshutz BH.Pollart D.Monforte J.Kotsuki H. Tetrahedron Lett. 1985, 26: 705 - 4
Otera J.Nozaki H. Tetrahedron Lett. 1986, 27: 5743 - 5
Kim KS.Song YH.Lee BH.Hahn CS. J. Org. Chem. 1986, 51: 404 - 6
Ukaji Y.Koumoto N.Fujisawa T. Chem Lett. 1989, 1623 - 7
Park KH.Yoon JY.Lee SG. Tetrahedron Lett. 1994, 35: 9737 - 8
DattaGupta A.Singh R.Singh VK. Synlett 1996, 69 - 9
Rao BV.Sarma BVNBS.Ravindranadh SV.Gurjar MK. Carbohydr. Lett. 1997, 377 - 10
Haraldsson GG.Stefansson T.Snorrason H. Acta Chem. Scand. 1998, 52: 824 - 11
Markó IE.Ates A.Augustyns B.Gautier A.Quesnel Y.Turet L.Wiaux M. Tetrahedron Lett. 1999, 40: 5613 - 12
Majumdar S.Bhattacharjya A. J. Org. Chem. 1999, 64: 5682 - 13
Bose DS.Jayalakshmi B.Narsaiah AV. Synthesis 2000, 67 - 14
Vijayasaradhi S.Singh J.Aidhen IS. Synlett 2000, 110 - 15
Sabitha G.Babu RS.Reddy EV.Yadav JS. Chem. Lett. 2000, 1074 - 16
Sabitha G.Babu RS.Rajkumar M.Srividya R.Yadav JS. Org. Lett. 2001, 1119 - 17
Xiao X.Bai D. Synlett 2001, 535 - 18
Yadav JS.Reddy BVS.Reddy KS. Chem. Lett. 2001, 430 - 19
Manzo E.Barone G.Bedini E.Iadonisi A.Mangoni L.Parrilli M. Tetrahedron 2002, 58: 129 - 20
Yadav JS.Reddy BVS. Carbohydr. Res. 2000, 329: 885 - 21
Yadav JS.Reddy BVS. Synlett 2000, 1275 - 22
Lu RJ.Liu D.Giese RW. Tetrahedron Lett. 2000, 41: 2817 - 23
Yang Y.Yang W.Teo C.Lin C. Synlett 2000, 1634 - 24
Bartoli G.Bosco M.Marcantoni E.Sambri L.Torregiani E. Synlett 1998, 209 - 25
Cappa A.Marcantoni E.Torregiani E.Bartoli G.Bellucci MC.Bosco M.Sambri L. J. Org. Chem. 1999, 64: 5696 - 26
Marcantoni E.Nobili F.Bartoli G.Bosco M.Sambri L. J. Org. Chem. 1997, 62: 4183 - 27
Hwu JR.Jain ML.Tsai F.Tsay S.Balakumar A.Hakimelahi H. J. Org. Chem. 2000, 65: 5077 - 28
Nair V.Nair LG.Balagopal L.Rajan R. Indian J. Chem., Sect. B 1999, 38: 1234 - 29
Ates A.Gautier A.Bern L.Plancher J.-M.Quesnel Y.Markó I. Tetrahedron Lett. 1999, 40: 1799 - 30
Markó I.Ates A.Gautier A.Bern L.Plancher J.-M.Quesnel Y.Vanherck J.-C. Angew. Chem. Int. Ed. 1999, 38: 3207
References
General Procedure
for Removal of Acetal (Ketal) Protecting Groups with CAN/Pyridine.
An
aqueous solution of CAN at pH = 4.4 is
prepared dissolving 105 mg of CAN (purchased from Fluka) (0.19 mmol)
in 19 mL of water and adding 60 µL of pyridine. An aliquot
of this solution (1 mL, 0.01 mmol) is added to a solution of substrate
(0.33 mmol) in acetone (1 mL). The mixture is kept at 68 °C
and every 2 h another aliquot of CAN solution is added until completion
of the reaction (see Table
[1]
for
the amounts of catalyst added). The reaction is quenched with pyridine
and the mixture is then concentrated under vacuum and product is
extracted in chloroform or ethyl acetate and then purified by silica
gel chromatography (eluent chloroform:methanol mixtures). The upscaling
of the process (to a 3 mmolar scale) was performed in the deprotection
of entry o with a comparable yield of 13b.
In this case an equal volume of acetone was added after every addition
of the aqueous solution of CAN/pyridine to prevent the
precipitation of the starting compound and the mixture was extracted
with ethyl acetate after neutralization without concentrating the
reaction solvent under vacuum. GLC analysis was performed after
peracetylation of the crude reaction mixture.
Spectroscopic
data of isolated saccharidic products.
1b: 1H
NMR (200 MHz): δ = 7.20-7.50 (aromatic
protons), 4.82 (1 H, d, J
1,2 = 3.6
Hz, H-1), 4.05 (1 H, m, H-4), 3.74-3.90 (3 H, m, H-2, H-3,
H-5), 3.43 (3 H, s, -OCH3), 3.36-3.48 (2 H,
m, 6-CH2). 13C NMR: δ = 143.7,
128.6, 127.8 and 127.0 (aromatic carbons), 99.4 (C-1), 86.8 (non
aromatic trityl carbon), 71.0, 69.7, 69.5, 69.1, 63.2 (C-2, C-3,
C-4,
C-5, and C-6), 55.2 (-OCH3).
8b: 1H NMR (200 MHz): δ = 7.30-6.90
(aromatic protons), 5.90 (1 H, d, J
1,2 = 3.8
Hz, H-1), 4.58 (1 H, d, H-2), 4.54 (2 H, AB, J
gem = 11.6
Hz, -O-CH
2Ar), 3.92-4.14
(3 H, m, H-3, H-4 and H-5), 3.78 (OCH3), 1.46 and 1.30
(6 H, 2 × s, acetonide CH3). 13C
NMR: δ = 129.6, 129.2, 114.1 (aromatic carbons),
111.7 (acetonide quaternary carbon), 105.1 (C-1), 82.1, 81.5, 79.8,
71,7, 69.2 and 64.3 (C-2, C-3, C-4 and C-5, C-6 and -OCH2Ar), 55.2 (-OCH3),
26.7 and 26.2 (acetonide CH3).
11b: 1H
NMR (200 MHz): δ = 7.30-6.90 (aromatic
protons), 5.75 (1 H, d, J
1,2 = 3.8
Hz, H-1), 4.74 (2 H, AB, J
gem = 13.1 Hz,
-OCH
2SCH3), 4.70
(1 H, dd, J
2,3 = 8.7
Hz, H-2), 4.18 (1 H, dd, J
3,4 = 3.4
Hz, H-3), 3.95-4.10 (2 H, m, H-4 and H-5), 3.69 (2 H, m,
6-CH2), 2.18 (3 H, s, -OCH2SCH
3),
1.55 and 1.32 (6 H, 2 × s, acetonide CH3). 13C
NMR: δ = 113.1 (acetonide quaternary carbon),
104.0 (C-1), 78.5, 77.6, 75.0, 74,7, 71.2 and 63.0 (C-2, C-3, C-4
and C-5, C-6 and
-OCH2SCH3),
26.7 and 26.4 (acetonide CH3), 14.5
(-OCH2SCH3).
13b: 1H
NMR (200 Mhz, CDCl3): δ = 5.30 (1 H,
t, J
2,3 =
J
3,4 = 9.8
Hz, H-3), 4.91 (1 H, d, J
1,2 = 3.8
Hz, H-1), 4.83
(1 H, dd, H-2), 3.65-3.90 (3 H,
m, H-4, H-5, H-6), 3.40 (3 H, s, 1-OCH3), 2.08 and 2.10
(6 H, 2 × s, 2 × -COCH3).
13C
NMR (50 Mhz, CDCl3): δ = 171.2 and
170.4 (COCH3), 96.6 (C-1),
72.6, 71.1, 70.8 and 68.6 (C-2, C-3, C-4 and
C-5), 61.2
(C-6), 55.0 (1-OCH3), 20.7 and 20.6 (COCH3).