Horm Metab Res 2002; 34(9): 469-474
DOI: 10.1055/s-2002-34785
Review
© Georg Thieme Verlag Stuttgart · New York

Adiponectin - Its Role in Metabolism and Beyond

N.  Stefan 1 , M.  Stumvoll 1, 2
  • 1Clinical Nutrition and Metabolism Section, NIDDK, NIH, Phoenix, Arizona, USA
  • 2Medizinische Klinik, Abteilung für Endokrinologie, Stoffwechsel und Pathobiochemie, Eberhard-Karls-Universität, Tübingen, Germany
Further Information

Publication History

Received: 23 April 2002

Accepted after revision: 13 June 2002

Publication Date:
17 October 2002 (online)

Abstract

Adiponectin is a recently identified adipose tissue-derived protein (adipocytokine) with important metabolic effects. It is exclusively expressed in adipose tissue and released into the circulation. Adiponectin expression and/or secretion is increased by insulin like growth factor-1 and ionomycin, and decreased by tumor necrosis factor-α, glucocorticoids, β-adrenergic agonists and cAMP. Data for insulin are somewhat inconclusive. Moreover, adiponectin expression and secretion are increased by activators of peroxisome proliferator-activated receptor (PPAR)-γ. Besides inhibiting inflammatory pathways, recombinant adiponectin increases insulin sensitivity and improves glucose tolerance in various animal models. This insulin-sensitizing effect appears to be mostly attributable to enhanced suppression of glucose production, but beneficial effects on muscle cannot be excluded. In humans, plasma adiponectin concentrations exceed those of any other hormone by a thousand times; they decrease with obesity and are positively associated with whole-body insulin sensitivity. Therefore, low adiponectin may contribute to the decrease in whole-body insulin sensitivity that accompanies obesity. Furthermore, there is increasing evidence that genetic variants in the adiponectin gene itself and/or in genes encoding adiponectin-regulatory proteins - such as PPAR-γ - may be associated with hypoadiponectinemia, insulin resistance and type 2 diabetes. This suggests that adiponectin may reflect PPAR-γ activity in vivo. Finally, reversal or alleviation of hypoadiponectinemia may represent a target for development of drugs improving insulin sensitivity and glucose tolerance.

References

  • 1 Kahn B B, Flier J S. Obesity and insulin resistance.  J Clin Invest. 2000;  106 473-481
  • 2 Havel P J. Control of energy homeostasis and insulin action by adipocyte hormones: leptin, acylation stimulating protein, and adiponectin.  Curr Opin Lipidol. 2002;  13 51-59
  • 3 McGarry J D. Banting Lecture 2001: dysregulation of fatty acid metabolism in the etiology of Type 2 diabetes.  Diabetes. 2002;  51 7-18
  • 4 Shulman G. Cellular mechanisms of insulin resistance.  J Clin Invest. 2000;  106 171-176
  • 5 Boden G. Role of fatty acids in the pathogenesis of insulin resistance and NIDDM.  Diabetes. 1997;  46 3-10
  • 6 Pelleymounter M A, Cullen M J, Baker M B, Hecht R, Winters D, Boone T, Collins F. Effects of the obese gene product on body weight regulation in ob/ob mice.  Science. 1995;  269 540-543
  • 7 Campfield L A, Smith F J, Guisez Y, Devos R, Burn P. Recombinant mouse OB protein: evidence for a peripheral signal linking adiposity and central neural networks.  Science. 1995;  269 546-549
  • 8 Schwartz M W, Baskin D G, Bukowski T R, Kuijper J L, Foster D, Lasser G, Prunkard D E, Porte D , Woods S C, Seeley R J, Weigle D S. Specificity of leptin action on elevated blood glucose levels and hypothalamic neuropeptide γ gene expression in ob/ob mice.  Diabetes. 1996;  45 531-535
  • 9 Dunbar J C, Hu Y, Lu H. Intracerebroventricular leptin increases lumbar and renal sympathetic nerve activity and blood pressure in normal rats.  Diabetes. 1997;  46 2040-2043
  • 10 Fruhbeck G, Aguado M, Gomez-Ambrosi J, Martinez J A. Lipolytic effect of in vivo leptin administration on adipocytes of lean and ob/ob mice, but not db/db mice.  Biochem Biophys Res Commun. 1998;  250 99-102
  • 11 Siegrist-Kaiser C A, Pauli V, Juge-Aubry C E, Boss O, Pernin A, Chin W W, Cusin I, Rohner-Jeanrenaud F, Burger A G, Zapf J, Meier C A. Direct effects of leptin on brown and white adipose tissue.  J Clin Invest. 1997;  100 2858-2864
  • 12 Hotamisligil G. Molecular mechanisms of insulin resistance and the role of the adipocyte.  Int J Obes Relat Metab Disord. 2000;  24 Suppl. 4 S23-S27
  • 13 Pradhan A D, Manson J E, Rifai N, Buring J E, Ridker P M. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus.  JAMA. 2001;  286 327-334
  • 14 Alessi M C, Morange P, Juhan-Vague I. Fat cell function and fibrinolysis.  Horm Metab Res. 2000;  32 504-508
  • 15 Kim S, Moustaid-Moussa N. Secretory, endocrine and autocrine/paracrine function of the adipocyte.  J Nutr. 2000;  130 3110S-3115S
  • 16 Zimmet P, Boyko E J, Collier G R, de Courten M. Etiology of the metabolic syndrome: potential role of insulin resistance, leptin resistance, and other players.  Ann N Y Acad Sci. 1999;  892 25-44
  • 17 Shuldiner A R, Yang R, Gong D W. Resistin, obesity and insulin resistance - the emerging role of the adipocyte as an endocrine organ.  N Engl J Med. 2001;  345 1345-1346
  • 18 Scherer P E, Williams S, Fogliano M, Baldini G, Lodish H. A novel serum protein similar to C1q, produced exclusively in adipocytes.  J Biol Chem. 1995;  270 26 746-26 749
  • 19 Hu E, Liang P, Spiegelman B M. AdipoQ is a novel adipose-specific gene dysregulated in obesity.  J Biol Chem. 1996;  271 10 697-10 703
  • 20 Maeda K, Okubo K, Shimomura I, Funahashi T, Matsuzawa Y, Matsubara K. CDNA cloning and expression of a novel adipose specific collagen-like factor, ApM1 (AdiPose most abundant gene transcript 1).  Biochem Biophys Res Commun. 1996;  221 286-289
  • 21 Nakano Y, Tobe T, Choi-Miura N H, Mazda T, Tomita M. Isolation and characterization of GBP28, a novel gelatin-binding protein purified from human plasma.  J Biochem (Tokyo). 1996;  120 803-812
  • 22 Shapiro L, Scherer P E. The crystal structure of a complement-1q family protein suggests an evolutionary link to tumor necrosis factor.  Curr Biol. 1998;  8 335-338
  • 23 Kavety B, Morgan J I. Characterization of transcript processing of the gene encoding precerebellin-1.  Brain Res Mol Brain Res. 1998;  63 98-104
  • 24 Kondo N, Kondo J. Identification of novel blood proteins specific for mammalian hibernation.  J Biol Chem. 1992;  267 473-478
  • 25 Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Miyagawa J, Hotta K, Shimomura I, Nakamura T, Miyaoka K, Kuriyama H, Nishida M, Yamashita S, Okubo K, Matsubara K, Muraguchi M, Ohmoto Y, Funahashi T, Matsuzawa Y. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity.  Biochem Biophys Res Commun. 1999;  257 79-83
  • 26 Hotta K, Funahashi T, Arita Y, Takahashi M, Matsuda M, Okamoto Y, Iwahashi H, Kuriyama H, Ouchi N, Maeda K, Nishida M, Kihara S, Sakai N, Nakajima T, Hasegawa K, Muraguchi M, Ohmoto Y, Nakamura T, Yamashita S, Hanafusa T, Matsuzawa Y. Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients.  Arterioscler Thromb Vasc Biol. 2000;  20 1595-1599
  • 27 Weyer C, Funahashi T, Tanaka S, Hotta K, Matsuzawa Y, Pratley R E, Tataranni P A. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia.  J Clin Endocrinol Metab. 2001;  86 1930-1935
  • 28 Yang W S, Lee W J, Funahashi T, Tanaka S, Matsuzawa Y, Chao C L, Chen C L, Tai T Y, Chuang L M. Weight reduction increases plasma levels of an adipose-derived anti-inflammatory protein, adiponectin.  J Clin Endocrinol Metab. 2001;  86 3815-3819
  • 29 Statnick M A, Beavers L S, Conner L J, Corominola H, Johnson D, Hammond C D, Rafaeloff-Phail R, Seng T, Suter T M, Sluka J P, Ravussin E, Gadski R A, Caro J F. Decreased expression of ApM1 in omental and subcutaneous adipose tissue of humans with type 2 diabetes.  Int J Exp Diabetes Res. 2000;  1 81-88
  • 30 Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K, Mori Y, Ide T, Murakami K, Tsuboyama-Kasaoka N, Ezaki O, Akanuma Y, Gavrilova O, Vinson C, Reitman M L, Kagechika H, Shudo K, Yoda M, Nakano Y, Tobe K, Nagai R, Kimura S, Tomita M, Froguel P, Kadowaki T. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity.  Nat Med. 2001;  7 941-946
  • 31 Combs T P, Wagner J A, Berger J, Doebber T, Wang W J, Zhang B B, Tanen M, Berg A H, O’Rahilly S, Savage D B, Chatterjee K, Weiss S, Larson P J, Gottesdiener K M, Gertz B J, Charron M J, Scherer P E, Moller D E. Induction of adipocyte complement-related protein of 30 kilodaltons by PPARgamma agonists: a potential mechanism of insulin sensitization.  Endocrinology. 2002;  143 998-1007
  • 32 Hotta K, Funahashi T, Bodkin N L, Ortmeyer H K, Arita Y, Hansen B C, Matsuzawa Y. Circulating concentrations of the adipocyte protein adiponectin are decreased in parallel with reduced insulin sensitivity during the progression to type 2 diabetes in rhesus monkeys.  Diabetes. 2001;  50 1126-1133
  • 33 Halleux C M, Takahashi M, Delporte M L, Detry R, Funahashi T, Matsuzawa Y, Brichard S M. Secretion of adiponectin and regulation of apM1 gene expression in human visceral adipose tissue.  Biochem Biophys Res Commun. 2001;  288 1102-1107
  • 34 Fasshauer M, Klein J, Neumann S, Eszlinger M, Paschke R. Hormonal regulation of adiponectin gene expression in 3T3-L1 adipocytes.  Biochem Biophys Res Commun. 2002;  290 1084-1089
  • 35 Maeda N, Takahashi M, Funahashi T, Kihara S, Nishizawa H, Kishida K, Nagaretani H, Matsuda M, Komuro R, Ouchi N, Kuriyama H, Hotta K, Nakamura T, Shimomura I, Matsuzawa Y. PPAR gamma ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein.  Diabetes. 2001;  50 2094-2099
  • 36 Fasshauer M, Klein J, Neumann S, Eszlinger M, Paschke R. Adiponectin gene expression is inhibited by beta-adrenergic stimulation via protein kinase A in 3T3-L1 adipocytes.  FEBS Lett. 2001;  507 142-146
  • 37 Kappes A, Loffler G. Influences of ionomycin, dibutyryl-cycloAMP and tumour necrosis factor-alpha on intracellular amount and secretion of ApM1 in differentiating primary human preadipocytes.  Horm Metab Res. 2000;  32 548-554
  • 38 Wajchenberg B L. Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome.  Endocr Rev. 2000;  21 697-738
  • 39 Vionnet N, Hani E l, Dupont S, Gallina S, Francke S, Dotte S, de Matos F, Durand E, Lepretre F, Lecoeur C, Gallina P, Zekiri L, Dina C, Froguel P. Genomewide search for type 2 diabetes-susceptibility genes in french whites: evidence for a novel susceptibility locus for early-onset diabetes on chromosome 3q27-Qter and independent replication of a type 2-diabetes locus on chromosome 1q21-Q24.  Am J Hum Genet. 2000;  67 1470-1480
  • 40 Kissebah A H, Sonnenberg G E, Myklebust J, Goldstein M, Broman K, James R G, Marks J A, Krakower G R, Jacob H J, Weber J, Martin L, Blangero J, Comuzzie A G. Quantitative trait loci on chromosomes 3 and 17 influence phenotypes of the metabolic syndrome.  Proc Natl Acad Sci USA. 2000;  97 14 478-14 483
  • 41 Hara K, Boutin P, Mori Y, Tobe K, Dina C, Yasuda K, Yamauchi T, Otabe S, Okada T, Eto K, Kadowaki H, Hagura R, Akanuma Y, Yazaki Y, Nagai R, Taniyama M, Matsubara K, Yoda M, Nakano Y, Kimura S, Tomita M, Kimura S, Ito C, Froguel P, Kadowaki T. Genetic variation in the gene encoding adiponectin is associated with an increased risk of type 2 diabetes in the Japanese population.  Diabetes. 2002;  51 536-540
  • 42 Stumvoll M, Tschritter O, Fritsche A, Staiger H, Renn W, Weisser M, Machicao F, Haring H. Association of the T-G polymorphism in adiponectin (Exon 2) with obesity and insulin sensitivity: interaction with family history of type 2 diabetes.  Diabetes. 2002;  51 37-41
  • 43 Zietz B, Barth N, Scholmerich J, Schmitz G, Schaffler A. Gly15Gly polymorphism within the human adipocyte-specific ApM-1gene but not Tyr111His polymorphism is associated with higher levels of cholesterol and LDL-cholesterol in Caucasian patients with type 2 diabetes.  Exp Clin Endocrinol Diabetes. 2001;  109 320-325
  • 44 Comuzzie A G, Funahashi T, Sonnenberg G, Martin L J, Jacob H J, Black A E, Maas D, Takahashi M, Kihara S, Tanaka S, Matsuzawa Y, Blangero J, Cohen D, Kissebah A. The genetic basis of plasma variation in adiponectin, a global endophenotype for obesity and the metabolic syndrome.  J Clin Endocrinol Metab. 2001;  86 4321-4325
  • 45 Barroso I, Gurnell M, Crowley V E, Agostini M, Schwabe J W, Soos M A, Maslen G L, Williams T D, Lewis H, Schafer A J, Chatterjee V K, O’Rahilly S. Dominant negative mutations in human PPARgamma associated with severe insulin resistance, diabetes mellitus and hypertension.  Nature. 1999;  402 880-883
  • 46 Matthaei S, Stumvoll M, Kellerer M, Haring H U. Pathophysiology and pharmacological treatment of insulin resistance.  Endocr Rev. 2000;  21 585-618
  • 47 Berg A H, Combs T P, Du X, Brownlee M, Scherer P E. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action.  Nat Med. 2001;  7 947-953
  • 48 Yang W S, Jeng C Y, Wu T J, Tanaka S, Funahashi T, Matsuzawa Y, Wang J P, Chen C L, Tai T Y, Chuang L. Synthetic peroxisome proliferator-activated receptor-gamma agonist, rosiglitazone, increases plasma levels of adiponectin in type 2 diabetic patients.  Diabetes Care. 2002;  25 376-380
  • 49 Ouchi N, Kihara S, Arita Y, Okamoto Y, Maeda K, Kuriyama H, Hotta K, Nishida M, Takahashi M, Muraguchi M, Ohmoto Y, Nakamura T, Yamashita S, Funahashi T, Matsuzawa Y. Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-kappaB signaling through a CAMP-dependent pathway.  Circulation. 2000;  102 1296-1301
  • 50 Hansson G. Regulation of immune mechanisms in atherosclerosis.  Ann N Y Acad Sci. 2001;  947 157-165
  • 51 Ouchi N, Kihara S, Arita Y, Nishida M, Matsuyama A, Okamoto Y, Ishigami M, Kuriyama H, Kishida K, Nishizawa H, Hotta K, Muraguchi M, Ohmoto Y, Yamashita S, Funahashi T, Matsuzawa Y. Adipocyte-derived plasma protein, adiponectin, suppresses lipid accumulation and class A scavenger receptor expression in human monocyte-derived macrophages.  Circulation. 2001;  103 1057-1063
  • 52 Kubota N, Terauchi Y, Yamauchi T, Kubota T, Moroi M, Matsui J, Eto K, Yano W, Nagai R, Kimura S, Kadowaki T, Noda T. Disruption of adiponectin causes insulin resistance and neointimal formation.  J Biol Chem. 2002;  May 24 (epub ahead of print)
  • 53 Fruebis J, Tsao T S, Javorschi S, Ebbets-Reed D, Erickson M R, Yen F T, Bihain B E, Lodish H F. Proteolytic cleavage product of 30-KDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice.  Proc Natl Acad Sci USA. 2001;  98 2005-2010
  • 54 Combs T P, Berg A H, Obici S, Scherer P E, Rossetti L. Endogenous glucose production is inhibited by the adipose-derived protein Acrp30.  J Clin Invest. 2001;  108 1875-1881
  • 55 Bachmann O P, Dahl D B, Brechtel K, Machann J, Haap M, Maier T, Loviscach M, Stumvoll M, Claussen C D, Schick F, Haring H U, Jacob S. Effects of intravenous and dietary lipid challenge on intramyocellular lipid content and the relation with insulin sensitivity in humans.  Diabetes. 2001;  50 2579-2584
  • 56 Wang Y, Xu A, Knight C, Xu L Y, Cooper G JS. Hydroxylation and glycosilation of the four conserved lysine residues in the collagenous domain of adiponectin.  J Biol Chem. 2001;  277 19 521-19 529
  • 57 Stefan N, Vozarova B, Funahashi T, Matsuzawa Y, Weyer C, Youngren J F, Havel P J, Pratley R E, Bogardus C, Tataranni P A. Plasma adiponectin concentration is associated with skeletal muscle insulin receptor tyrosine phosphorylation and low plasma concentration precedes a decrease in whole-body insulin sensitivity in humans.  Diabetes. 2002;  51 1884-1888
  • 58 Chao L, Marcus-Samuels B, Mason M M, Moitra J, Vinson C, Arioglu E, Gavrilova O, Reitman M. Adipose tissue is required for the antidiabetic, but not for the hypolipidemic, effect of thiazolidinediones.  J Clin Invest. 2000;  106 1221-1228
  • 59 Stumvoll M, Haring H. The peroxisome proliferator-activated receptor γ2 Pro12Ala polymorphism.  Diabetes. 2002;  51 2341-2347

M. Stumvoll, M.D.

Clinical Diabetes and Nutrition Section · National Institutes of Health ·

4212 N 16th Street. Rm. 5 - 41 · Phoenix, AZ 85016 · USA ·

Phone: + 1 (602) 200 5328 ·

Fax: + 1 (602) 200 5335

Email: Michael.Stumvoll@med.uni-tuebingen.de