References
1 For recent review, see: Beletskaya IP.
Cheprakov AV.
Chem.
Rev.
2000,
100:
3009 ;
and references therein
2a
Bocelli G.
Catellani M.
Chiusoli GP.
Cugini F.
Lasagni B.
Neri Mari M.
Inorg.
Chim. Acta
1998,
270:
123
2b
Tietze LF.
Ferraccioli R.
Synlett
1998,
145
2c
Bocelli G.
Catellani M.
Cugini F.
Ferraccioli R.
Tetrahedron Lett.
1999,
40:
2623
2d
Catellani M.
Catucci C.
Celentano G.
Ferraccioli R.
Synlett
2001,
803
The use of quaternary ammonium salts
in the Heck reaction in dry and aqueous solvents was thoroughly
studied by Jeffery:
3a
Jeffery T.
Tetrahedron
1996,
52:
10113 ; and references therein
3b
Jeffery T.
David M.
Tetrahedron Lett.
1998,
39:
5751
3c For a recent report
on water effect on Heck reaction see ref.
[1]
4
Palladium-catalyzed
Cyclization of 1 in Dry DMF: Synthesis of 1,4-Dihydro-2
H
-isoquinolin-3-ones
(3): n-Bu4NOAc (173 mg,
0.575 mmol) was placed in a Schlenk-type flask and stirred under
vacuo at 110 °C for 2 h in order to remove water.
After cooling to r.t. 1 (0.23 mmol), Pd(OAc)2 (5.2
mg, 0.023 mmol), Ph3P (12 mg, 0.046 mmol) and dry and
degassed DMF (the content of water was ≤0.005%)
(4.6 mL, 0.05 M) were added under nitrogen. The mixture was heated
at 85 °C under stirring until the conversion was
complete (monitored by TLC). The reaction mixture was cooled, diluted
with water (10 mL) and extracted with diethyl ether (3 × 5
mL). After drying (Na2SO4) and removal of
the solvent the residue was purified by flash chromatography on
silica gel (eluent: EtOAc/petroleum ether) leading to (E), (Z)-
2 (R1 = H,
1/1, 60% yield), (R1 = Me,
1/1, 49% yield), (E),
(Z)-
2 and (E)-2a (R1 = Ph,
1/1/1, 50% yield), respectively (Table
[1]
, entries 1, 3, 5; the
configuration of 2 was determined by NOESY experiments).
Due to their instability 2 and 2a, were submitted to catalytic reduction
with 10% Pd/C (25-30% mol) under
1 atm of hydrogen in EtOAc for 24 h. After usual work-up and purification
of the crude by flash chromatography on silica gel (EtOAc/petroleum
ether) compounds 3 were obtained.
3 (R1 = H):
Oil, yield: 72%; IR (neat): 2961, 2931, 2872, 1651 cm-1; 1H
NMR (300 MHz, CDCl3): δ = 0.82
(t, 3 H, J = 7.53
Hz), 0.87 (t, 3 H, J = 7.6 Hz), 1.22-1.34
(m, 2 H), 1.47-1.57 (m, 2 H), 1.71-1.86 (m, 2
H), 3.24-3.34 (m, 1 H), 3.39 (t, 1 H, J = 6.86 Hz), 3.55-3.65
(m, 1 H), 4.17 (d, 1 H, J = 15.8 Hz), 4.59 (d,
1 H, J = 15.8
Hz), 7.05-7.20 (m, 4 H); 13C
NMR (75 MHz, CDCl3): δ = 11.1,
13.8 (Me), 20.1, 27.1, 29.4, 46.9 (CH2), 49.0 (CH), 50.4
(CH2), 125.1, 126.4, 127.3, 127.6 (CH), 131.2, 136.6,
171.6 (Cquat); Ms (EI): m/z (%) = 231(12) [M+],
202(100), 160(50), 146(25), 132(60), 117(55), 91(20). Anal. Calcd
for C15H21NO: C, 77.88; H, 9.15; N 6.05. Found:
C, 78.02; H, 9.14; N, 6.12.
3 (R1 = Me):
Oil, yield 68%; IR(neat): 2959, 2929, 2871, 1647 cm-1; 1H
NMR (300 MHz, DMSO-d
6): δ = 0.76
(t, 3 H, J = 7.3
Hz), 0.80 (t, 3 H, J = 7.3 Hz), 1.13-1.2
(m, 4 H), 1.40-1.6 (m, 4 H), 3.17-3.20 (m, 1 H),
3.30 (t, 1 H, J = 7.0 Hz),
3.43-3.52 (m, 1 H), 4.26 (d, 1 H, J = 16.1
Hz), 4.56 (d, 1 H, J = 16.1
Hz), 7.10-7.20 (m, 4 H); 13C
NMR (75 MHz, DMSO-d
6): δ = 14.0
(2 C), 19.8 (2 C), 29.2, 35.2, 45.9, 47.3, 49.5, 125.7, 126.6, 127.4
(2 C), 132.3, 137.1, 170.6; Ms (EI): m/z (%) = 245(15) [M+],
203 (100), 174 (30), 146 (15), 131 (30), 117 (15), 91 (10). Anal
Calcd for C16H23NO: C, 78.32; H, 9.45; N 5.71.
Found: C, 78.14; H, 9.59; N, 5.78.
3 (R1 = Ph):
Oil, yield: 70%; IR(neat): 2957, 2928, 2860, 1651 cm-1; 1H
NMR (300 MHz, CDCl3): δ = 0.94
(t, 3 H, J = 7.3
Hz), 1.35 (sextet, 2 H, J = 7.4
Hz), 1.59 (quintet, 2 H, J = 7.5
Hz), 1.96-2.20 (m, 2 H), 2.65 (t, 2 H, J = 8.3
Hz), 3.32-3.42 (m, 1 H), 3.60-3.72 (m, 2 H), 4.26
(d, 1 H, J = 15.8
Hz), 4.67 (d, 1 H, J = 15.8
Hz), 7.14-7.31 (m, 9 H);13C
NMR (75 MHz, CDCl3): δ = 13.9
(Me), 20.1, 28.9, 32.9, 35.3, 46.9 (CH2), 47.5 (CH),
50.4 (CH2), 125.3, 125.9, 126.5, 127.4, 127.5, 128.3,
128.4 (CH), 131.3, 136.7, 141.4, 171.3 (Cquat); MS (EI): m/z (%) = 306(75) [M - 1],
214(90), 203(100), 158(25), 91(90). Anal. Calcd for C21H25NO:
C, 82.04; H, 8.20; N, 4.56. Found: C, 82.32; H, 8.19; N, 4.61.
5
Palladium-catalyzed
Cyclization of 1 in Aqueous DMF: Synthesis of 2,3-Dihydro-1
H
-2-benzazepin-3-ones
(4a) and 1,4-Dihydro-2
H
-2-benzazocin-3-ones (5a). In a Schlenk-type
flask nBu4NOAc (173 mg, 0.575 mmol), Pd(OAc)2 (5.2
mg, 0.023 mmol), Ph3P (12.1 mg, 0.046 mmol), a solution
of 1 (0.23 mmol) in degassed DMF (4.2 mL),
degassed water (0.42 mL) were added under nitrogen. The mixture
was heated at 85 °C under stirring until the conversion
was complete (TLC), then worked-up as described in ref.
[3]
The crude obtained was
dissolved in dry DMF (3.0 mL) and added with t-BuOK
(28 mg, 0.25 mmol). The resulting mixture was heated under stirring
at 80 °C for 18 h. After cooling it was poured
into water (7 mL) and extracted with ether (3 × 4
mL). The combined organic layer was dried (Na2SO4)
and evaporated under vacuo. The crude was purified by flash chromatography
on silica gel (EtOAc/petroleum ether) to give in order
of elution 5a (R1 = H,
Me) and 4a (R1 = H,
Me, Ph).
5a (R1 = H):
Mp 41-42 °C (n-hexane/EtOAc);
IR (nujol): 1737, 1646 cm-1; 1H
NMR (300 MHz, CDCl3): δ = 0.92
(t, 3 H, J = 7.3
Hz), 1.3 (sextet, 2 H, J = 7.4
Hz), 1.49-1.59 (m, 2 H), 3.33-3.40 (m, 4 H), 4.45
(s, 2 H), 5.8 (ddd, 1 H, J = 12.6, 6.4,
6.4 Hz), 6.55 (d, 1 H, J = 12.6
Hz), 7.16-7.32 (m, 4 H); 13C
NMR (75 MHz, CDCl3): δ = 13.9
(Me), 20.1, 29.5, 38.9, 45.1, 51.9 (CH2), 125.7, 127.6,
128.4, 130.1, 131.6, 131.8 (CH), 135.0, 136.5, 168.7 (Cquat);
MS (EI): m/z (%) = 229(60) [M+],
186(30), 129(100), 115(40). Anal. Calcd for C15H19NO:
C, 78.56; H, 8.35; N, 6.11. Found: C, 78.48; H, 8.41; N, 6.15.
4a (R1 = H):
Oil; IR (neat): 2931, 2872, 1737, 1636, 1595 cm-1; 1H
NMR (300 MHz, CDCl3): δ = 0.85
(t, 3 H, J = 7.3 Hz),
1.20-1.27 (m, 2 H), 1.47-1.57 (m, 2 H), 2.29 (s,
3 H), 3.44-3.49 (m, 2 H), 3.7-4.5 (br s, 2 H),
6.4 (s, 1 H), 7.25-7.48 (m, 4 H); 13C
NMR (75 MHz, CDCl3): δ = 13.7
(Me), 19.9 (CH2), 23.9 (Me), 30.5, 47.1, 51.6 (CH2),
125.5, 126.9, 127.2, 128.2, 128.8 (CH), 137.1, 137.7, 143.0, 166.4
(Cquat); MS (EI): m/z (%) = 229(80) [M+],
187(90), 173(100), 159(60), 129(85), 115(55). Anal. Calcd for C15H19NO:
C, 78.56; H, 8.35; N, 6.11. Found: C, 78.75; H, 8.15; N, 5.99.
5a (R1 = Me):
Oil; IR(neat): 2958, 2927, 2871, 1728, 1635 cm-1; 1H
NMR (300 MHz, CDCl3): δ = 0.91
(t, 3 H, J = 7.3 Hz),
1.25-1.37 (m, 2 H), 1.50-1.63 (m, 2 H), 2.06 (s,
3 H), 2.64 (d, 2 H, J = 8.0
Hz), 3.49 (pst, 2 H, J = 7.49
Hz), 4.16 (s, 2 H), 5.62 (br t, 1 H, J = 8.0
Hz), 7.17-7.30 (m, 4 H); 13C NMR
(75 MHz, CDCl3): δ = 13.9,
20.1, 22.1, 30.3, 39.3, 50.5, 52.4, 119.2, 125.6, 128.0, 128.4,
130.3, 133.8, 140.4, 142.3, 168.4; MS (EI): m/z (%) = 243
(15) [M+], 200 (40), 187 (25),
144 (25), 129 (100), 115 (20); HRMS (EI): Calcd for C16H21NO:
243.1623. Found: 243.1654.
4a (R1 = Me):
Mp 52-53 °C (n-hexane);
IR(nujol): 1733, 1641, 1596 cm-1; 1H
NMR (300 MHz, CDCl3): δ = 0.86
(t, 3 H, J = 7.2
Hz), 1.11 (t, 3 H, J = 7.0
Hz), 1.20-1.29 (m, 2 H), 1.45-1.60 (m, 2 H), 2.69-2.73
(br q, 2 H, J = 8.0
Hz), 3.46 (pst, 2 H, J = 7.3
Hz), 4.0 (br s, 1 H), 4.35 (br s, 1 H), 6.26
(br s, 1 H),
7.27-7.50 (m, 4 H);13C NMR
(75 MHz, CDCl3): δ = 13.2,
13.7, 19.9, 29.8, 30.5, 46.9, 51.6, 123.9, 126.6, 127.2, 128.1,
128.5, 137.0, 137.6, 148.6, 166.5; MS (EI): m/z (%) = 243
(65) [M+], 201 (72), 187 (100),
173 (45), 144 (30), 128 (43), 115 (20). Anal Calcd for C16H21NO:
C, 78.97; H, 8.70; N, 5.76. Found: C, 78.93; H, 8.41; N, 5.71.
4a (R1 = Ph):
Mp 92-93 °C (n-hexane);
IR(nujol): 1746, 1636, 1597 cm-1; 1H
NMR (300 MHz, CDCl3): δ = 0.8
(t, 3 H, J = 7.3
Hz), 1.16 (sextet, 2 H, J = 7.6
Hz), 1.46 (quintet, 2 H, J = 7.5
Hz), 3.40 (t, 2 H, J = 7.3
Hz), 3.90 (br s, 3 H), 4.25 (br s, 1 H), 6.20 (s, 1 H), 7.10-7.30
(m, 8 H), 7.40-7.45 (m, 1 H); 13C
NMR (75 MHz, CDCl3): δ = 14.2
(Me), 20.4, 30.9, 43.5, 47.4, 52.1 (CH2), 126.9, 127.4,
127.7, 128.6, 129.0, 129.2, 129.3 (CH), 137.3, 138.0, 138.8, 146.0,
166.7 (Cquat); MS (EI): m/z (%) = 305(100) [M+],
263(87), 249(50), 206(33), 115(25), 91(67) Anal Calcd for C21H23NO:
C, 82.59; H, 7.59; N, 4.59. Found: C, 82.76; H, 7.46; N, 4.71.
6
Tsuji J.
Palladium Reagents and Catalysts
Wiley;
Chichester:
1995.
7
Linstead RP.
Williams LTL.
J. Chem.
Soc.
1926,
2735
8 Although the water effect is felt even
in the presence of traces of water we preferred to carry out experiments
with 10% water for reasons of reproducibility.
9
Herrmann WA.
Brossmer C.
Reisinger CP.
Riermeier TH.
Oefele K.
Beller M.
Chem.-Eur. J.
1997,
3:
1357
10b
Knobloch K.
Eberbach W.
Org. Lett.
2000,
2:
1117
10c
Lindman S.
Lindenberg G.
Nyberg F.
Karlèn A.
Hallberg A.
Bioorg. Med.
Chem.
2000,
8:
2375