References
- 1
Kappe CO.
Acc.
Chem. Res.
2000,
33:
879
-
See for example:
-
2a
Mayer TU.
Kapoor TM.
Haggarty SJ.
King RW.
Schreiber SL.
Science
1999,
286:
971
-
2b
Sidler DR.
Barta N.
Li W.
Hu E.
Matty L.
Ikemoto N.
Campbell JS.
Chartrain M.
Gbewonyo K.
Boyd R.
Corley EG.
Ball RG.
Larsen RD.
Reider PJ.
Can. J. Chem.
2002,
80:
646
-
2c
Rovnyak GC.
Atwal KS.
Hedberg A.
Kimball SD.
Moreland S.
Gougoutas JZ.
O’Reilly BC.
Schwartz J.
Malley MF.
J. Med. Chem.
1992,
35:
3254
- 3 For a recent review, see: Kappe CO.
Eur. J. Med. Chem.
2000,
35:
1043
-
4a
Biginelli P.
Gazz. Chim. Ital.
1893,
23:
360
-
4b Review: Kappe CO.
Tetrahedron
1993,
49:
6937
- 6
Stadler A.
Kappe CO.
J. Comb. Chem.
2001,
3:
624 ; and references cited therein
-
7a
Khanina EL.
Andaburskaya MB.
Duburs G.
Zolotoyabko RM.
Latv. PSR Zinat. Akad. Vestis, Kim.
Ser.
1978,
197 ; Chem. Abstr. 1978, 89, 43319r
-
7b
Cho H.
Takeuchi Y.
Ueda M.
Mizuno A.
Tetrahedron Lett.
1988,
29:
5405
-
For reviews on the Mitsunobu reaction,
see:
-
8a
Mitsunobu O.
Synthesis
1981,
1
-
8b
Hughes DL.
Org. React.
1992,
42:
335
-
8c
Hughes DL.
Org. Prep. Proced. Int.
1996,
28:
127
- 9
Tsunoda T.
Yamamiya Y.
Ito S.
Tetrahedron
Lett.
1993,
34:
1639
- 10
Tsunoda T.
Otsuka J.
Yamamiya Y.
Ito S.
Chem. Lett.
1994,
539
-
In general, examples found in the
literature are limited to relatively acidic sulfonamides or trifluoroacetamides.
For some recent examples involving amides, see:
-
11a
Kozai S.
Takaoka S.
Maruyama T.
Tetrahedron
Lett.
2002,
43:
2633
-
11b
Evans PA.
Manangan T.
Tetrahedron
Lett.
2001,
42:
6637
-
11c
Bombrun A.
Casi G.
Tetrahedron Lett.
2002,
43:
2187
-
11d
Reichwein JF.
Liskamp RMJ.
Tetrahedron
Lett.
1998,
39:
1243
- 12 Note that the use of high-temperature
microwave chemistry was unsuccessful here. For microwave-assisted
Mitsunobu alkylations, see: Steinreiber A.
Stadler A.
Mayer SF.
Faber K.
Kappe CO.
Tetrahedron
Lett.
2001,
42:
6283
- 13
1H NMR spectroscopy
(characteristic 3-5 Hz coupling between C4-H and N3-H)
readily allows one to distinguish between N1-, N3- and O-alklyated
DHPMs. For details and the selective preparation of N3-alkylated
DHPMs, see: Kappe CO.
Roschger P.
J. Heterocycl. Chem.
1989,
26:
55
-
15a
Zaragoza F.
Stephensen H.
J.
Org. Chem.
2001,
66:
2518
-
15b
Tsunoda T.
Ozaki F.
Ito S.
Tetrahedron
Lett.
1994,
35:
5081
-
15c
Tsunoda T.
Nagino C.
Oguri M.
Ito S.
Tetrahedron Lett.
1996,
37:
2459
5 Note that the successful use of N,N′-disubstituted
and N-aryl-ureas in the Biginelli condensation
is not well documented in the literature. In our own hands, these building
blocks often produced mixtures of various unidentified products
along with only small amounts of the desired dihydropyrimidones.
See also: Kappe, C. O.; Stadler, A. Org. Synth. 2003, 63, in
press.
14
Typical Experimental
Procedure (Outlined for Entry 5): In a dry 5 mL reaction vial
the appropriate DHPM (R1 = EtO,
R2 = Ph, R3 = Me;
26 mg, 0.10 mmol) was dissolved in anhyd dioxane (0.5 mL) at 70 °C.
After cooling to r.t. benzyl alcohol (54 mg, 0.50 mmol, 52 µL),
TBP (51 mg, 0.25 mmol, 62 µL) and TMAD (43 mg, 0.25 mmol) were
added. The vial was sealed, flushed with argon and the reaction
mixture shaken for 15 h at r.t. The white precipitate that was formed
was filtered off, and the crude reaction mixture separated by silica
gel flash chromatography (DCM:EtOAc 1:1) providing 21.2 mg (61%)
of N1-alkylated DHPM as colorless crystals, mp 155 °C
(lit.
[6]
155-156 °C). 1H
NMR (DMSO-d
6): δ = 1.09
(t, J = 7.1
Hz, 3 H), 2.36 (s, 3 H), 4.02 (q, J = 7.1
Hz, 2 H), 4.84 and 5.09 (2 d, J = 16.6
Hz, 2 H), 5.24 (d, J = 3.2
Hz, 1 H), 7.06 (d, J = 7.0 Hz,
2 H), 7.22-7.35 (m, 8 H), 8.16 (d, J = 3.3
Hz, 1 H). MS (APCI): m/z (%) = 351(28) [M+].