Subscribe to RSS
DOI: 10.1055/s-2002-34883
Synthesis of Chiral 3-Substituted Phthalides via Rhodium(I)-catalyzed Crossed Alkyne Cyclotrimerisation
Publication History
Publication Date:
21 October 2002 (online)
Abstract
3-Substituted phthalides were synthesized for the first time by crossed alkyne cyclotrimerisations with Wilkinson’s catalyst. Esterification of propiolic acids with chiral propargylic alcohols by either the DCC/DMAP or the Mitsunobu method allows the synthesis of either enantiomeric form of diyne esters, that are used in crossed alkyne cyclotrimerisations with acetylene to provide 3-substituted phthalides in both enantiomeric forms.
Key words
phthalides - alkyne cyclotrimerisation - Wilkinson’s catalyst - propargylic alcohols - (S)-3-n-butylphthalide
-
1a
Devon TK.Scott AI. Handbook of Naturally Occurring Compounds Vol. 1: Academic Press; New York: 1975. p.249-264 -
1b
Barry RD. Chem. Rev. 1964, 64: 229 - Several pharmacological effects ranging from anti-tumor, anti-asthmatic, anti-convulsant, anesthesia prolongation, PGF2 α inhibition, and cerebral anti-ischemic action have been attributed to 3-n-butylphthalides, see for example:
-
2a
Zheng GQ.Zhang J.Kenney PM.Lam LKT. ACS Symp. Ser. 1994, 546: 230 -
2b
Zheng GQ.Kenney PM.Zhang J.Lam LK. Nutr. Cancer 1993, 19: 77 -
2c
Liu Z.Song Y.Wang W.Chen W.Wang X. Zhongcaoyao 1982, 13: 17 -
2d
Yu S.You S.Chen H. Yaoxue Xuebao 1984, 19: 486 ; Chem. Abstr. 1984, 101, 222490c -
2e
Sato H.Yorozu H.Yamaoka S. Biomed. Res. 1993, 14: 385 -
2f
Ogawa Y,Hosaka K,Kubota K, andChin M. inventors; JP 0477480. ; Chem Abstr. 1992, 117, 69721n -
2g
Wang XW. Drugs Future 2000, 25: 16 -
3a
Tang W.Eisenbrand G. Chinese Drugs of Plant Origin, Chemistry, Pharmacology, and Use in Traditional and Modern Medicine Springer-Verlag; Berlin, Heidelberg: 1992. -
3b
Barton DHR.de Vries JX. J. Chem. Soc. 1963, 1916 -
3c
Bjeldanes LF.Kim I.-S. J. Org. Chem. 1977, 42: 2333 -
3d
Bartschat D.Beck T.Mosandl A. J. Agric. Food. Chem. 1997, 45: 4554 -
4a
Ke Y.Ye K.Grossniklaus HE.Archer DR.Joshi HC.Kapp JA. Cancer Immunol. Immunother. 2000, 49: 217 -
4b
Ye K.Ke Y.Keshava N.Shanks J.Kapp JA.Tekmal RR.Petros J.Joshi HC. Proc. Natl. Acad. Sci. U.S.A. 1998, 95: 1601 -
4c
Mehta AK.Ticku MK. Brain Res. Rev. 1999, 29: 196 -
4d
Kardos J.Blandl T.Luyen ND.Doernyei G.Gács-Baitz E.Simonyi M.Cash DJ.Blaskó G.Szántay C. Eur. J. Med. Chem. 1996, 31: 761 -
4e
Prager RH.Tippett JM.Ward AD. Aust. J. Chem. 1981, 34: 1085 -
4f
Hung TV.Mooney BA.Prager RH.Tippett JM. Aust. J. Chem. 1981, 34: 383 -
5a
Sartori G.Bigi F.Tao X.Porta C.Maggi R.Predieri G.Lanfranchi M.Pellinghelli MA. J. Org. Chem. 1995, 60: 6588 -
5b
Taunton J.Wood JL.Schreiber SL. J. Am. Chem. Soc. 1993, 115: 10378 -
5c
Katsuura K.Snieckus V. Can. J. Chem. 1987, 65: 124 -
5d
Katsuura K.Snieckus V. Tetrahedron Lett. 1985, 26: 9 -
5e
Uemura M.Take K.Isobe K.Minami T.Hayashi Y. Tetrahedron 1985, 41: 5771 -
5f
Uemura M.Take K.Hayashi Y. J. Chem. Soc., Chem. Commun. 1983, 858 -
5g
Broadhurst MJ.Hassall CH. J. Chem. Soc., Perkin Trans. 1 1982, 2227 -
5h
Snieckus V. Heterocycles 1980, 14: 1649 -
5i
Kim KS.Spatz MW.Johnson F. Tetrahedron Lett. 1979, 20: 331 - Aryllithium reagents:
-
6a
Takahashi H.Tsubuki T.Higashiyama K. Chem. Pharm. Bull. 1991, 39: 3136 -
6b
Alexakis A.Sedrani R.Normant JF.Mangeney P. Tetrahedron: Asymmetry 1990, 1: 283 -
6c
Ogawa Y.Hosaka K.Chin M.Mitsuhashi H. Heterocycles 1989, 29: 865 -
6d
Meyers AI.Hanagan MA.Trefonas LM.Baker RJ. Tetrahedron 1983, 39: 1991 -
6e
Asami M.Mukaiyama T. Chem. Lett. 1980, 17 -
6f Dialkyl- and arylzinc
reagents:
Ogawa Y.Saiga A.Mori M.Shibata T.Takagi K. J. Org. Chem. 2000, 65: 1031 -
6g See also:
Nakano H.Kumagai N.Matsuzaki H.Kabuto C.Hongo H. Tetrahedron: Asymmetry 1997, 8: 1391 -
6h See further:
Soai K.Hori H.Kawahara M. Tetrahedron: Asymmetry 1991, 2: 253 -
6i See also:
Watanabe M.Hashimoto N.Araki S.Butsugan Y. J. Org. Chem. 1992, 57: 742 -
6j Organotitanium reagents:
Takahashi H.Tsubuki T.Higashiyama K. Synthesis 1992, 681 -
6k Another example:
Olivero AG.Weidmann B.Seebach D. Helv. Chim. Acta 1981, 64: 2485 -
6l Borane reagents:
Ramachandran PV.Chen G.-M.Brown HC. Tetrahedron Lett. 1996, 37: 2205 - BINAP-Ru(II) hydrogenation:
-
7a
Kitamura M.Ohkuma T.Inoue S.Sayo N.Kumobayashi H.Akutagawa S.Ohta T.Takaya H.Noyori R. J. Am. Chem. Soc. 1988, 110: 629 -
7b
Ohkuma T.Kitamura M.Noyori R. Tetrahedron Lett. 1990, 31: 5509 -
7c Transfer hydrogenation:
Everaere K.Scheffler J.-L.Mortreux A.Carpentier J.-F. Tetrahedron Lett. 2001, 42: 1899 -
7d Ni-catalyzed cross couplings:
Lei J.-G.Hong R.Yuan S.-G.Lin G.-Q. Synlett 2002, 927 -
7e Bioreduction:
Kitayama T. Tetrahedron: Asymmetry 1997, 8: 253 -
8a
Padwa A.Weingarten MD. J. Org. Chem. 2000, 65: 3722 -
8b
Harland PA.Hodge P. Synthesis 1982, 223 -
8c
Becher J.Nielsen HC.Jacobsen JP.Simonsen O.Clausen H. J. Org. Chem. 1988, 53: 1862 - 9
Sato Y.Ohashi K.Mori M. Tetrahedron Lett. 1999, 40: 5231 - 10
Bhatarah P.Smith EH. J. Chem. Soc., Perkin Trans. 1 1992, 2163 - 11
Müller E. Synthesis 1974, 761 -
12a
Grigg R.Scott R.Stevenson P. Tetrahedron Lett. 1982, 23: 2691 -
12b
Grigg R.Scott R.Stevenson P. J. Chem. Soc., Perkin Trans. 1 1988, 1357 -
12c
Grigg R.Sridharan V.Wang J.Xu J. Tetrahedron 2000, 56: 8967 -
13a
Magnus P.Witty D.Stamford A. Tetrahedron Lett. 1993, 34: 23 -
13b
McDonald FE.Zhu HYH.Holmquist CR. J. Am. Chem. Soc. 1995, 117: 6605 -
13c
Witulski B.Stengel T. Angew. Chem. Int. Ed. 1999, 38: 2426 -
13d
Witulski B.Stengel T.Fernández-Hernández JM. Chem. Commun. 2000, 1965 -
13e
Kotha S.Mohanraja K. Chem. Commun. 2000, 1909 -
13f
McDonald FE.Smolentsev V. Org. Lett. 2002, 4: 745 -
13g
Witulski B.Alayrac C. Angew. Chem. Int. Ed. 2002, 41: 3281 -
14a Propargylic
alcohol (S)-2h (94% ee)
is commercially available. The product, (S)-2g was obtained with 88% ee after
(S)-alpine borane reduction of the corresponding ketone
as described in the literature:
Overman LE.Bell KL. J. Am. Chem. Soc. 1981, 103: 1851 -
14b For the synthesis of
(+)-propargylic alcohols via addition of lithium acetylide to
aldehydes, see:
Midland MM. J. Org. Chem. 1975, 40: 2250 - For recent achievements in the synthesis of optical active propargylic alcohols, see:
-
15a
Franz DE.Tomooka CS.Fässler R.Carreira EM. Acc. Chem. Res. 2000, 33: 373 -
15b
Schubert T.Hummel W.Müller M. Angew. Chem. Int. Ed. 2002, 41: 634 -
16a
Birtwistle DH.Brown JM.Foxton MW. Tetrahedron 1988, 44: 7309 -
16b
Maier S.Kazmaier U. Eur. J. Org. Chem. 2000, 1241 - For reviews on the Mitsunobu reaction, see:
-
18a
Dodge JA.Nissen JS.Presnell M. Org. Synth. 1996, 73: 110 -
18b
Hughes DL. Org. Prep. Proced. Int. 1996, 28: 127 -
18c
Hughes DL. Org. React. 1992, 42: 335 -
18d
Castro BR. Org. React. 1983, 29: 1 -
18e
Mitsunobu O. Synthesis 1981, 1
References
Selected data for diyne esters 3:
3a:
Mp: 101-103 °C. 1H
NMR (400 MHz, CDCl3): δ = 7.99-7.94
(m, 1 H), 7.79-7.74 (m, 3 H), 7.64-7.59 (m, 1 H),
7.40-7.20 (m, 4 H), 5.06 (s, 2 H), 2.97 (s, 1 H), 2.33
(s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 151.9,
145.4, 134.7, 134.0, 130.5, 130.0, 129.9, 126.9, 125.5, 123.8, 120.4, 113.5,
103.7, 85.9, 78.9, 75.9, 73.9, 54.4, 21.5. MS (EI):
m/z (%) = 377
(100) [M+]. Anal. Calcd for
C21H15NO4S: C, 66.83; H, 4.01;
N, 3.71. Found: C, 66.99; H, 3.99; N, 3.60.
(S)-3g: 1H
NMR (400 MHz, CDCl3): δ = 5.40
(dt, J = 6.7 Hz, J = 2.2 Hz,
1 H), 2.93 (s, 1 H), 2.52 (d, J = 2.2
Hz, 1 H), 1.87-1.81 (m, 2 H), 1.49-1.26 (m, 4
H), 0.93 (t, J = 7.2
Hz, 3 H). 13C NMR (100 MHz, CDCl3) δ = 151.6,
80.0, 75.4, 74.6, 74.3, 65.9, 34.1, 26.9, 22.1, 13.8. MS (EI): m/z (%) = 164
(8) [M+].
(S)-3i: Mp: 59-61 °C. 1H
NMR (400 MHz, CDCl3): δ = 7.61-7.58
(m, 2 H), 7.48-7.43 (m, 1 H), 7.40-7. 35 (m, 2
H), 5.56 (dq, J = 6.6, J = 2.2 Hz,
1 H), 2.53 (d, J = 2.2
Hz, 1 H), 1.60 (d, J = 6.6
Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 152.8,
133.0, 130.8, 128.6, 119.4, 87.1, 81.2, 80.2, 73.8, 61.7, 21.1.
MS (EI): m/z (%) = 198(7) [M+].
Anal. Calcd for C13H10O2: C, 78.77;
H, 5.09. Found: C, 78.82; H, 4.98.
The enantiopurity of the esters 3g-i was analyzed after their conversion to the phthalides 4f-h, that proceeded without any detectable racemisation.
20Selected data for phthalides 4:
(S)-4f: Oil; [α]D
22 = -42
(c 0.45, CHCl3); 88% ee
as determined by chiral capillary GLC analysis with Supleco Beta-DexΤ
Μ 325; {lit.
[6l]
[α]D
22 -62
(c 0.42, CHCl3)}. 1H NMR
(400 MHz, CDCl3): δ = 7.89
(d, J = 7.6
Hz, 1 H), 7.67 (dt, J = 7.6
Hz, J = 3.3
Hz, 1 H), 7.52 (t, J = 7.6
Hz, 1 H), 7.46 (d, J = 7.6
Hz, 1 H), 5.49 (dd, J = 7.9
Hz, J = 4.1
Hz, 1 H), 2.10-2.01 (m, 1 H), 1.81-1.71 (m, 1
H), 1.53-1.33 (m, 4 H), 0.88 (t, J = 7.2
Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 170.5,
150.0, 133.8, 128.9, 126.0, 125.5, 121.7, 81.3, 34.3, 26.7, 22.3,
13.7. MS (EI): m/z (%) = 190(5) [M+].
(S)-4g: oil; [α]D
22 = -22.1
(c 0.83, MeOH); 94% ee as determined
by chiral capillary GLC analysis with Supleco Beta-DexΤ
Μ 325.
(R)-4g: [α]D
22 = +21.4
(c 0.81, MeOH); 94% ee as determined
by chiral capillary GLC analysis with Supleco Beta-DexΤ
Μ 325.
(S)-4h: [α]D
22 = -15.6
(c 0.94, CHCl3). (R)-4h: [α]D
22 = +14.9
(c 0.98, CHCl3). 1H
NMR (400 MHz, CDCl3): δ = 7.71
(t, J = 7.6
Hz, 1 H), 7.58-7. 55 (m, 2 H), 7.50-7.41 (m, 5
H), 5.56 (q, J = 6.6
Hz, 1 H), 1.69 (d, J = 6.6
Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 169.1,
152.5, 142.7, 136.4, 133.8, 130.8, 129.5, 128.3, 127.9, 121.8, 120.3,
76.1, 20.6. MS (EI): m/z (%) = 224(100) [M+].