References
1a
Devon TK.
Scott AI.
Handbook of Naturally Occurring Compounds
Vol.
1:
Academic Press;
New York:
1975.
p.249-264
1b
Barry RD.
Chem. Rev.
1964,
64:
229
Several pharmacological effects
ranging from anti-tumor, anti-asthmatic, anti-convulsant, anesthesia
prolongation, PGF2
α inhibition, and
cerebral anti-ischemic action have been attributed to 3-n-butylphthalides, see for example:
2a
Zheng GQ.
Zhang J.
Kenney PM.
Lam LKT.
ACS
Symp. Ser.
1994,
546:
230
2b
Zheng GQ.
Kenney PM.
Zhang J.
Lam LK.
Nutr.
Cancer
1993,
19:
77
2c
Liu Z.
Song Y.
Wang W.
Chen W.
Wang X.
Zhongcaoyao
1982,
13:
17
2d
Yu S.
You S.
Chen H.
Yaoxue
Xuebao
1984,
19:
486 ; Chem. Abstr.
1984, 101, 222490c
2e
Sato H.
Yorozu H.
Yamaoka S.
Biomed. Res.
1993,
14:
385
2f Ogawa Y, Hosaka K, Kubota K, and Chin M. inventors; JP 0477480.
; Chem Abstr. 1992, 117, 69721n
2g
Wang XW.
Drugs Future
2000,
25:
16
3a
Tang W.
Eisenbrand G.
Chinese Drugs of Plant Origin, Chemistry,
Pharmacology, and Use in Traditional and Modern Medicine
Springer-Verlag;
Berlin,
Heidelberg:
1992.
3b
Barton DHR.
de Vries JX.
J.
Chem. Soc.
1963,
1916
3c
Bjeldanes LF.
Kim I.-S.
J. Org. Chem.
1977,
42:
2333
3d
Bartschat D.
Beck T.
Mosandl A.
J. Agric.
Food. Chem.
1997,
45:
4554
4a
Ke Y.
Ye K.
Grossniklaus HE.
Archer DR.
Joshi HC.
Kapp JA.
Cancer
Immunol. Immunother.
2000,
49:
217
4b
Ye K.
Ke Y.
Keshava N.
Shanks J.
Kapp JA.
Tekmal RR.
Petros J.
Joshi HC.
Proc. Natl. Acad. Sci. U.S.A.
1998,
95:
1601
4c
Mehta AK.
Ticku MK.
Brain Res.
Rev.
1999,
29:
196
4d
Kardos J.
Blandl T.
Luyen ND.
Doernyei G.
Gács-Baitz E.
Simonyi M.
Cash DJ.
Blaskó G.
Szántay C.
Eur. J. Med. Chem.
1996,
31:
761
4e
Prager RH.
Tippett JM.
Ward AD.
Aust. J. Chem.
1981,
34:
1085
4f
Hung TV.
Mooney BA.
Prager RH.
Tippett JM.
Aust.
J. Chem.
1981,
34:
383
5a
Sartori G.
Bigi F.
Tao X.
Porta C.
Maggi R.
Predieri G.
Lanfranchi M.
Pellinghelli MA.
J. Org. Chem.
1995,
60:
6588
5b
Taunton J.
Wood JL.
Schreiber SL.
J. Am. Chem. Soc.
1993,
115:
10378
5c
Katsuura K.
Snieckus V.
Can. J. Chem.
1987,
65:
124
5d
Katsuura K.
Snieckus V.
Tetrahedron Lett.
1985,
26:
9
5e
Uemura M.
Take K.
Isobe K.
Minami T.
Hayashi Y.
Tetrahedron
1985,
41:
5771
5f
Uemura M.
Take K.
Hayashi Y.
J.
Chem. Soc., Chem. Commun.
1983,
858
5g
Broadhurst MJ.
Hassall CH.
J.
Chem. Soc., Perkin Trans. 1
1982,
2227
5h
Snieckus V.
Heterocycles
1980,
14:
1649
5i
Kim KS.
Spatz MW.
Johnson F.
Tetrahedron
Lett.
1979,
20:
331
Aryllithium reagents:
6a
Takahashi H.
Tsubuki T.
Higashiyama K.
Chem.
Pharm. Bull.
1991,
39:
3136
6b
Alexakis A.
Sedrani R.
Normant JF.
Mangeney P.
Tetrahedron: Asymmetry
1990,
1:
283
6c
Ogawa Y.
Hosaka K.
Chin M.
Mitsuhashi H.
Heterocycles
1989,
29:
865
6d
Meyers AI.
Hanagan MA.
Trefonas LM.
Baker RJ.
Tetrahedron
1983,
39:
1991
6e
Asami M.
Mukaiyama T.
Chem. Lett.
1980,
17
6f Dialkyl- and arylzinc
reagents: Ogawa Y.
Saiga A.
Mori M.
Shibata T.
Takagi K.
J. Org. Chem.
2000,
65:
1031
6g See also: Nakano H.
Kumagai N.
Matsuzaki H.
Kabuto C.
Hongo H.
Tetrahedron:
Asymmetry
1997,
8:
1391
6h See further: Soai K.
Hori H.
Kawahara M.
Tetrahedron: Asymmetry
1991,
2:
253
6i See also: Watanabe M.
Hashimoto N.
Araki S.
Butsugan Y.
J. Org.
Chem.
1992,
57:
742
6j Organotitanium reagents: Takahashi H.
Tsubuki T.
Higashiyama K.
Synthesis
1992,
681
6k Another example: Olivero AG.
Weidmann B.
Seebach D.
Helv. Chim. Acta
1981,
64:
2485
6l Borane reagents: Ramachandran PV.
Chen G.-M.
Brown HC.
Tetrahedron Lett.
1996,
37:
2205
BINAP-Ru(II) hydrogenation:
7a
Kitamura M.
Ohkuma T.
Inoue S.
Sayo N.
Kumobayashi H.
Akutagawa S.
Ohta T.
Takaya H.
Noyori R.
J. Am. Chem. Soc.
1988,
110:
629
7b
Ohkuma T.
Kitamura M.
Noyori R.
Tetrahedron
Lett.
1990,
31:
5509
7c Transfer hydrogenation: Everaere K.
Scheffler J.-L.
Mortreux A.
Carpentier J.-F.
Tetrahedron
Lett.
2001,
42:
1899
7d Ni-catalyzed cross couplings: Lei J.-G.
Hong R.
Yuan S.-G.
Lin G.-Q.
Synlett
2002,
927
7e Bioreduction: Kitayama T.
Tetrahedron: Asymmetry
1997,
8:
253
8a
Padwa A.
Weingarten MD.
J.
Org. Chem.
2000,
65:
3722
8b
Harland PA.
Hodge P.
Synthesis
1982,
223
8c
Becher J.
Nielsen HC.
Jacobsen JP.
Simonsen O.
Clausen H.
J. Org. Chem.
1988,
53:
1862
9
Sato Y.
Ohashi K.
Mori M.
Tetrahedron
Lett.
1999,
40:
5231
10
Bhatarah P.
Smith EH.
J. Chem. Soc., Perkin
Trans. 1
1992,
2163
11
Müller E.
Synthesis
1974,
761
12a
Grigg R.
Scott R.
Stevenson P.
Tetrahedron Lett.
1982,
23:
2691
12b
Grigg R.
Scott R.
Stevenson P.
J. Chem.
Soc., Perkin Trans. 1
1988,
1357
12c
Grigg R.
Sridharan V.
Wang J.
Xu J.
Tetrahedron
2000,
56:
8967
13a
Magnus P.
Witty D.
Stamford A.
Tetrahedron Lett.
1993,
34:
23
13b
McDonald FE.
Zhu HYH.
Holmquist CR.
J. Am. Chem. Soc.
1995,
117:
6605
13c
Witulski B.
Stengel T.
Angew. Chem. Int. Ed.
1999,
38:
2426
13d
Witulski B.
Stengel T.
Fernández-Hernández JM.
Chem. Commun.
2000,
1965
13e
Kotha S.
Mohanraja K.
Chem. Commun.
2000,
1909
13f
McDonald FE.
Smolentsev V.
Org.
Lett.
2002,
4:
745
13g
Witulski B.
Alayrac C.
Angew. Chem. Int. Ed.
2002,
41:
3281
14a Propargylic
alcohol (S)-2h (94% ee)
is commercially available. The product, (S)-2g was obtained with 88% ee after
(S)-alpine borane reduction of the corresponding ketone
as described in the literature: Overman LE.
Bell KL.
J. Am. Chem. Soc.
1981,
103:
1851
14b For the synthesis of
(+)-propargylic alcohols via addition of lithium acetylide to
aldehydes, see: Midland MM.
J.
Org. Chem.
1975,
40:
2250
For recent achievements in the
synthesis of optical active propargylic alcohols, see:
15a
Franz DE.
Tomooka CS.
Fässler R.
Carreira EM.
Acc.
Chem. Res.
2000,
33:
373
15b
Schubert T.
Hummel W.
Müller M.
Angew.
Chem. Int. Ed.
2002,
41:
634
16a
Birtwistle DH.
Brown JM.
Foxton MW.
Tetrahedron
1988,
44:
7309
16b
Maier S.
Kazmaier U.
Eur. J. Org. Chem.
2000,
1241
17 Selected data for diyne esters 3:
3a:
Mp: 101-103 °C. 1H
NMR (400 MHz, CDCl3): δ = 7.99-7.94
(m, 1 H), 7.79-7.74 (m, 3 H), 7.64-7.59 (m, 1 H),
7.40-7.20 (m, 4 H), 5.06 (s, 2 H), 2.97 (s, 1 H), 2.33
(s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 151.9,
145.4, 134.7, 134.0, 130.5, 130.0, 129.9, 126.9, 125.5, 123.8, 120.4, 113.5,
103.7, 85.9, 78.9, 75.9, 73.9, 54.4, 21.5. MS (EI):
m/z (%) = 377
(100) [M+]. Anal. Calcd for
C21H15NO4S: C, 66.83; H, 4.01;
N, 3.71. Found: C, 66.99; H, 3.99; N, 3.60.
(S)-3g: 1H
NMR (400 MHz, CDCl3): δ = 5.40
(dt, J = 6.7 Hz, J = 2.2 Hz,
1 H), 2.93 (s, 1 H), 2.52 (d, J = 2.2
Hz, 1 H), 1.87-1.81 (m, 2 H), 1.49-1.26 (m, 4
H), 0.93 (t, J = 7.2
Hz, 3 H). 13C NMR (100 MHz, CDCl3) δ = 151.6,
80.0, 75.4, 74.6, 74.3, 65.9, 34.1, 26.9, 22.1, 13.8. MS (EI): m/z (%) = 164
(8) [M+].
(S)-3i: Mp: 59-61 °C. 1H
NMR (400 MHz, CDCl3): δ = 7.61-7.58
(m, 2 H), 7.48-7.43 (m, 1 H), 7.40-7. 35 (m, 2
H), 5.56 (dq, J = 6.6, J = 2.2 Hz,
1 H), 2.53 (d, J = 2.2
Hz, 1 H), 1.60 (d, J = 6.6
Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 152.8,
133.0, 130.8, 128.6, 119.4, 87.1, 81.2, 80.2, 73.8, 61.7, 21.1.
MS (EI): m/z (%) = 198(7) [M+].
Anal. Calcd for C13H10O2: C, 78.77;
H, 5.09. Found: C, 78.82; H, 4.98.
For reviews on the Mitsunobu reaction,
see:
18a
Dodge JA.
Nissen JS.
Presnell M.
Org. Synth.
1996,
73:
110
18b
Hughes DL.
Org. Prep. Proced. Int.
1996,
28:
127
18c
Hughes DL.
Org. React.
1992,
42:
335
18d
Castro BR.
Org. React.
1983,
29:
1
18e
Mitsunobu O.
Synthesis
1981,
1
19 The enantiopurity of the esters 3g-i was
analyzed after their conversion to the phthalides 4f-h, that proceeded without any detectable
racemisation.
20 Selected data for phthalides 4:
(S)-4f: Oil; [α]D
22 = -42
(c 0.45, CHCl3); 88% ee
as determined by chiral capillary GLC analysis with Supleco Beta-DexΤ
Μ 325; {lit.
[6l]
[α]D
22 -62
(c 0.42, CHCl3)}. 1H NMR
(400 MHz, CDCl3): δ = 7.89
(d, J = 7.6
Hz, 1 H), 7.67 (dt, J = 7.6
Hz, J = 3.3
Hz, 1 H), 7.52 (t, J = 7.6
Hz, 1 H), 7.46 (d, J = 7.6
Hz, 1 H), 5.49 (dd, J = 7.9
Hz, J = 4.1
Hz, 1 H), 2.10-2.01 (m, 1 H), 1.81-1.71 (m, 1
H), 1.53-1.33 (m, 4 H), 0.88 (t, J = 7.2
Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 170.5,
150.0, 133.8, 128.9, 126.0, 125.5, 121.7, 81.3, 34.3, 26.7, 22.3,
13.7. MS (EI): m/z (%) = 190(5) [M+].
(S)-4g: oil; [α]D
22 = -22.1
(c 0.83, MeOH); 94% ee as determined
by chiral capillary GLC analysis with Supleco Beta-DexΤ
Μ 325.
(R)-4g: [α]D
22 = +21.4
(c 0.81, MeOH); 94% ee as determined
by chiral capillary GLC analysis with Supleco Beta-DexΤ
Μ 325.
(S)-4h: [α]D
22 = -15.6
(c 0.94, CHCl3). (R)-4h: [α]D
22 = +14.9
(c 0.98, CHCl3). 1H
NMR (400 MHz, CDCl3): δ = 7.71
(t, J = 7.6
Hz, 1 H), 7.58-7. 55 (m, 2 H), 7.50-7.41 (m, 5
H), 5.56 (q, J = 6.6
Hz, 1 H), 1.69 (d, J = 6.6
Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 169.1,
152.5, 142.7, 136.4, 133.8, 130.8, 129.5, 128.3, 127.9, 121.8, 120.3,
76.1, 20.6. MS (EI): m/z (%) = 224(100) [M+].