References
1
Kobinata K.
Koshino H.
Kudo T.
Isono K.
Osada H.
J.
Antibiot.
1993,
46:
1616
2
Koshino H.
Kobinata K.
Isono K.
Osada H.
J. Antibiot.
1993,
46:
1619
3
Suenaga T.
Nakamura H.
Koshino H.
Kobinata K.
Osada H.
Nakata T.
Tennen Yuki Kagobutsu Toronkai Koen
Yoshishu
1997,
39:
607
4
Omura S.
Macrolide Antibiotics: Chemistry, Biology, Practice
Academic
Press;
New York:
1984.
Reviews:
5a
Oishi T.
Nakata T.
Synthesis
1990,
635
5b
Rychnovsky SD.
Chem. Rev.
1995,
95:
2021
5c
Schneider C.
Angew.
Chem. Int. Ed.
1998,
37:
1375 ; Angew. Chem.
1998
, 110, 1445
5d For selected examples see: Poss CS.
Rychnovsky SD.
Schreiber SL.
J.
Am. Chem. Soc.
1993,
115:
3360
5e Rychnovsky SD.
Hoye RC.
J.
Am. Chem. Soc.
1994,
116:
1753
5f Mori Y.
Asai M.
Okumura A.
Furukawa H.
Tetrahedron
1995,
51:
5299
5g
Weigand S.
Brückner R.
Liebigs Ann. Recl.
1997,
1657
5h
Rychnovsky SD.
Khire UR.
Yang G.
J. Am. Chem. Soc.
1997,
119:
2058
5i
Smith AB.
Boldi AM.
J.
Am. Chem. Soc.
1997,
119:
6925
5j
Krüger J.
Carreira EM.
Tetrahedron
Lett.
1998,
39:
7013
5k
Dreher SD.
Leighton JL.
J.
Am. Chem. Soc.
2001,
123:
341
5l
Paterson I.
Collet LA.
Tetrahedron Lett.
2001,
42:
1187
6 Review: Schneider C.
Synlett
2001,
1079 ; and references cited therein
7a
Schneider C.
Rehfeuter M.
Tetrahedron
Lett.
1998,
39:
9
7b
Schneider C.
Rehfeuter M.
Chem.-Eur. J.
1999,
5:
2850
8
Paterson I.
Gibson KR.
Oballa RM.
Tetrahedron Lett.
1996,
37:
8585
9
Evans DA.
Coleman PJ.
Cote B.
J.
Org. Chem.
1997,
62:
788
10
Experimental Procedure: An
amount of 149 mg (0.39 mmol) of methyl ketone 7 was
dissolved in 4 mL diethyl ether and cooled to -78 °C.
For enolization 0.59 mL (0.59 mmol) of a 1 M solution of dibutylboron
triflate in dichloromethane were added and subsequently 92 µL
(0.66 mmol) triethyl-amine and the resulting solution was stirred for
30 min at -78 °C and for 30 min at 0 °C.
Then the solution was cooled to -100 °C
and 122 mg (0.27 mmmol) of aldehyde 8,
dissolved in 1 mL diethyl ether, were added with a syringe. Stirring
was continued for 3 h at -100 °C and 3
h at -78 °C after which the reaction
was quenched with pH 7 buffer. After separation of the phases the
aq phase was repeatedly extracted with diethyl ether, the combined organic
extracts were dried over MgSO4, filtered and evaporated
in vacuo. Purification of the crude mixture through flash chromatography
with diethyl ether/pentane (1:2) as eluent yielded 145
mg (65%) of the desired aldol product 9 as
a colourless oil (84:16 mixture of stereo-isomers) along with 34
mg (27%) of unreacted aldehyde 8 and
44 mg (30%) of methyl ketone 7 both
of which were used again in the aldol reaction. [α]D
20 +19.7
(c 0.58, CHCl3);
IR(film): ν = 3471 (OH), 2992,
2949, 2857 (CH), 1741 (C=O), 1712 (C=O) cm-1; 1H
NMR (300 MHz, CDCl3): δ = 0.05
(s, 6 H, SiMe2), 0.90 (s, 9 H, t-Bu),
1.07-1.33 (m, 2 H), 1.36, 1.40, 1.41 [3 s, 12
H, 2 × C(CH3)2], 1.50-1.97
(m, 10 H), 2.37 (dd, J = 15.5,
6.0 Hz, 1 H, 2-H), 2.43-2.65 (m, 4 H) 2.73 (dd, J = 15.5,
7.0 Hz, 1 H, 2-H), 3.68 (s, 3 H, OMe), 3.65-4.29 (m, 9
H), 4.45, 4.48, 4.55, 4.56 (4 × d, J = 11.5 Hz,
4 H, 2 × OBn), 7.25-7.36 (m,
10 H, 2 × Ph); 13C
NMR (75 MHz, CDCl3): δ = -5.35,
18.30, 19.81, 19.84, 25.94, 30.11, 30.26, 36.86, 37.41, 39.45, 40.20,
40.47, 41.18, 42.39, 49.29, 50.81, 51.60, 58.77, 65.28, 65.48, 65.76,
65.87, 66.49, 70.36, 72.44, 71.93, 74.63, 98.36, 98.81, 127.70,
127.80, 128.00, 128.10, 128.40, 138.10, 138.30, 171.30, 209.40;
MS (200 eV, DCI/NH3):
m/z
(%) = 847(100) [M + NH4
+];
calcd for C46H72O11Si (829.15):
C, 66.63; H, 8.75. Found: C, 66.82; H, 8.50.
11
Evans DA.
Duffy JL.
Dart MJ.
Tetrahedron
Lett.
1994,
35:
8537
12
Evans DA.
Chapman KT.
Carreira EM.
J. Am. Chem. Soc.
1988,
110:
3560
13 For an account on the stereochemical
analysis of 1,3-diol acetonides by 13C
NMR see: Rychnovsky SD.
Rogers BN.
Richardson TI.
Acc.
Chem. Res.
1998,
31:
9
14a Direct
acetonide formation on diol 10 furnished
a triacetonide with two syn- and one anti-stereochemical relationships. When
the reduction of aldol product 9 was performed
in a syn-selective manner with NaBH4 and Et2BOMe
according to Narasaka
[14b]
with
subsequent debenzylation and tetraacetonide formation the major stereoisomer
contained two syn- and two anti-stereo-chemical relationships in
agreement with the assigned configurations.
14b
Narasaka K.
Pai F.-C.
Tetrahedron
1984,
40:
2233
15a
Wieland H.
Chem. Ber.
1912,
45:
484
15b
Barbier P.
Locquin R.
C. R. Chim.
1913,
156:
1443
16
Burgess EM.
Penton HR.
Taylor EA.
J. Org. Chem.
1973.
38:
p.26
17
Spectroscopic
Data of 2: [α]D
20 0
(c 0.2, CHCl3); IR(film): ν = 2990,
2938, 2857 (CH), 1745 (C=O) cm-1; 1H
NMR (500 MHz, C6D6): δ = 0.06,
0.08 (2 × s, 6 H, SiMe2),
0.98 (s, 9 H, t-Bu), 1.10-1.60
(m, 14 H), 1.32, 1.37, 1.47, 1.49, 1.50, 1.54, 1.55 [7 s,
24 H, 8 × C(CH3)2],
1.67 (s, 3 H, OAc), 1.73-1.82 (m, 1 H), 2.06 (quint, J = 7.0 Hz,
1 H), 3.68 (dt, J = 10.0,
5.0 Hz, 1 H, CH2OTBS), 3.82 (ddd, J = 10.0,
8.5, 5.0 Hz, 1 H, CH2OTBS), 3.83-3.89 (m, 1
H), 3.96-4.34 (m, 9 H); 13C NMR
(150 MHz, C6D6): δ = -5.38,
18.49, 19.82, 19.92, 19.97, 20.42, 24.86, 26.13, 30.39, 30.63, 30.67,
37.60, 37.80, 39.46, 40.16, 42.80, 43.08, 43.59, 59.20, 62.55, 62.69,
64.86, 65.34, 65.60, 65.71, 65.76, 67.38, 67.70, 98.54, 98.59, 98.80,
100.50, 170.10; MS (200 eV, EI):
m/z
(%) = 715(34) [M+ - CH3],
414(4), 380(5), 337(10), 256(18), 149(21), 57(100) [C4H9];
HRMS calcd for C38H70O11Si: for [M+ - CH3] 715.4453.
Found: 715.4531.