Abstract
The development of optically active fluorinated synthetic building
blocks of general utility is a current goal of organofluorine
chemists. The serine-derived Garner aldehyde was converted to a
general 4,4-difluoroamino acid building block via fluoro-Reformatsky
reaction with ethyl bromodifluoroacetate. The utility of this building
block was demonstrated by the synthesis of derivatives of (2S )-4,4-difluoroglutamine, (2S )-4,4-difluoroglutamic acid, and its
incorporation into a fluorophore-containing isopeptide 2 designed as a mechanistic probe of γ-glutamyl
hydrolase. Compound 2 proved to be a substrate
for γ-glutamyl hydrolase and was hydrolyzed at a rate significantly
slower than the corresponding non-fluorinated analog.
Key words
fluoroamino acids - fluoropeptides - stereoselective
synthesis - γ-glutamyl hydrolase - fluorescence
enzyme assay
References 1 Current Address: Department of Immunology
NB-30, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland,
OH, 44195.
2
Welch JT.
Eswarakrishnan S.
Fluorine
in Bioorganic Chemistry
Wiley;
New
York:
1991.
3
Organofluorine
Compounds in Medicinal Chemistry and Biomedical Applications
Filler R.
Kobayashi Y.
Yagupolskii LM.
Elsevier;
Amsterdam:
1993.
4
Tsukamoto T.
Coward JK.
McGuire JJ. In
Biomedical Frontiers
of Fluorine Chemistry
Ojima I.
McCarthy JR.
Welch JT.
American Chemical Society;
Washington D.C.:
1996.
p.118
5
McGuire JJ.
Hart BP.
Haile WH.
Rhee M.
Galivan J.
Coward JK.
Arch. Biochem. Biophys.
1995,
321:
319
6
Hart BP.
Haile WH.
Licato NJ.
Bolanowska WE.
McGuire JJ.
Coward JK.
J.
Med. Chem.
1996,
39:
56
7
Tsukamoto T.
Kitazume T.
McGuire JJ.
Coward JK.
J. Med. Chem.
1996,
39:
66
8
McGuire JJ.
Hart BP.
Haile WH.
Magee KJ.
Rhee M.
Bolanowska WE.
Russell C.
Galivan J.
Paul B.
Coward JK.
Biochem. Pharmacol.
1996,
52:
1295
9
Fluorine-Containing
Amino Acids, Synthesis and Properties
Kukhar VP.
Soloshonok VA.
Wiley;
Chichester:
1995.
10
Sutherland A.
Willis CL.
Nat. Prod. Rep.
2000,
17:
621
11
Asymmetric
Fluoroorganic Chemistry: Synthesis, Applications, and Future Directions
Ramachandran PV.
American
Chemical Society;
Washington D.C.:
2000.
12
Enantiocontrolled
Synthesis of Fluoroorganic Compounds: Stereochemical Challenges
and Biomedical Targets
Soloshonok VA.
Wiley;
Chichester:
1999.
13
Konas DW.
Coward JK.
Org. Lett.
1999,
1:
2105
14
Konas DW.
Coward JK.
J. Org. Chem.
2001,
66:
8831
15 J. J. Pankuch, unpublished results;
for a closely related FRET peptide substrate, see: Pankuch JJ.
Coward JK.
Bioorg.
Med. Chem. Lett.
2001,
11:
1561
16
McGuire JJ.
Coward JK. In
Folates
and Pterins
Vol. 1:
Blakley RL.
Benkovic SJ.
Wiley;
New
York:
1984.
p.135
17
Liang X.
Andersch J.
Bols M.
J.
Chem. Soc., Perkin Trans. 1
2001,
2136
18
Kim KS.
Qian L.
Tetrahedron Lett.
1993,
34:
7195
19
Otaka A.
Miyoshi K.
Burke TR.
Roller PP.
Kubota H.
Tamamura H.
Fujii N.
Tetrahedron
Lett.
1995,
36:
927
20
Delle Monache G.
Di Giovanni MC.
Maggio F.
Misiti D.
Zappia G.
Synthesis
1995,
1155
21
Leanna MR.
Sowin TJ.
Morton HE.
Tetrahedron Lett.
1992,
33:
5029
22
Jurczak J.
Gryko D.
Kobrzycka E.
Gruza H.
Prokopowicz P.
Tetrahedron
1998,
54:
6051
23
Hallinan EA.
Fried J.
Tetrahedron Lett.
1984,
25:
2301
24
Barton DHR.
McCombie SW.
J.
Chem. Soc., Perk. Trans. 1
1975,
1574
25
Chatgilialoglu C.
Ferreri C.
Res. Chem. Intermed.
1993,
19:
755
26
Studer A.
Amrein S.
Synthesis
2002,
835
27
Barton DHR.
Jaszberenyi JC.
Tetrahedron
Lett.
1989,
30:
2619
28
Barton DHR.
Jang DO.
Jaszberenyi JC.
Tetrahedron Lett.
1990,
31:
4681
29
Barton DHR.
Jang DO.
Jaszberenyi JC.
Tetrahedron Lett.
1991,
32:
7187
30
Barton DHR.
Jang DO.
Jaszberenyi JC.
Tetrahedron Lett.
1992,
33:
2311
31
Barton DHR.
Jang DO.
Jaszberenyi JC.
Tetrahedron
1993,
49:
7193
32
Barton DHR.
Jang DO.
Jaszberenyi JC.
J. Org. Chem.
1993,
58:
6838
33
Barton DHR.
Jacob M.
Tetrahedron
Lett.
1998,
39:
1331
34
Jang DO.
Cho DH.
Barton DHR.
Synlett
1998,
39
35
Zalkin H.
Adv.
Enzymol. Relat. Areas Mol. Biol.
1993,
66:
203
36
Zalkin H.
Smith JL.
Adv. Enzymol. Relat.
Areas Mol. Biol.
1998,
72:
87
37
Huang XY.
Holden HM.
Raushel FM.
Ann. Rev. Biochem.
2001,
70:
149
38
Tsukamoto T.
Coward JK.
J. Org. Chem.
1996,
61:
2497
39a
Meffre P.
Dave RH.
Leroy J.
Badet B.
Tetrahedron Lett.
2001,
42:
8625
39b Note added in proof: A
recently published correction to Ref. 39a indicates that the reported synthesis
of l -4,4-difluoroglutamine is in error;
the product isolated was l -4,4-difluoroglutamic
acid, see: Meffre P.
Dave RH.
Leroy J.
Badet B.
Tetrahedron
Lett.
2002,
43:
6279 .
Thus, removal of the Cbz group in 15 (Scheme
3) by catalytic hydrogenolysis in modest yield (ca 50%)
as reported for the racemic material in Ref. 38 represents the only
tenable route to the synthesis of L-4,4-difluoroglutamine reported
to date
40
Ding Y.
Wang JQ.
Abboud KA.
Xu YL.
Dolbier WR.
Richards NGJ.
J. Org.
Chem.
2001,
66:
6381
41
Zhao M.
Li J.
Song Z.
Desmond R.
Tschaen DM.
Grabowski EJJ.
Reider PJ.
Tetrahedron
Lett.
1998,
39:
5323
42
Kitagawa O.
Hashimoto A.
Kobayashi Y.
Taguchi T.
Chem. Lett.
1990,
1307
43
Mathias LJ.
Synthesis
1979,
561
44
Yao R.
Schneider E.
Ryan TJ.
Galivan J.
Proc. Natl. Acad. Sci. USA
1996,
93:
10134
45
Licato NJ.
Coward JK.
Nimec Z.
Galivan J.
Bolanowska WE.
McGuire JJ.
J. Med. Chem.
1990,
33:
1022
46 Pankuch, J.; Hui, M. (University of
Michigan, Ann Arbor), unpublished results.
47
Chave KJ.
Auger IE.
Galivan J.
Ryan TJ.
J. Biol. Chem.
2000,
275:
40365