Subscribe to RSS
DOI: 10.1055/s-2002-35616
The Synthesis of (2S)-4,4-Difluoroglutamyl γ-Peptides Based on Garner’s Aldehyde and Fluoro-Reformatsky Chemistry
Publication History
Publication Date:
20 November 2002 (online)
Abstract
The development of optically active fluorinated synthetic building blocks of general utility is a current goal of organofluorine chemists. The serine-derived Garner aldehyde was converted to a general 4,4-difluoroamino acid building block via fluoro-Reformatsky reaction with ethyl bromodifluoroacetate. The utility of this building block was demonstrated by the synthesis of derivatives of (2S)-4,4-difluoroglutamine, (2S)-4,4-difluoroglutamic acid, and its incorporation into a fluorophore-containing isopeptide 2 designed as a mechanistic probe of γ-glutamyl hydrolase. Compound 2 proved to be a substrate for γ-glutamyl hydrolase and was hydrolyzed at a rate significantly slower than the corresponding non-fluorinated analog.
Key words
fluoroamino acids - fluoropeptides - stereoselective synthesis - γ-glutamyl hydrolase - fluorescence enzyme assay
- 2
Welch JT.Eswarakrishnan S. Fluorine in Bioorganic Chemistry Wiley; New York: 1991. - 3
Organofluorine
Compounds in Medicinal Chemistry and Biomedical Applications
Filler R.Kobayashi Y.Yagupolskii LM. Elsevier; Amsterdam: 1993. - 4
Tsukamoto T.Coward JK.McGuire JJ. In Biomedical Frontiers of Fluorine ChemistryOjima I.McCarthy JR.Welch JT. American Chemical Society; Washington D.C.: 1996. p.118 - 5
McGuire JJ.Hart BP.Haile WH.Rhee M.Galivan J.Coward JK. Arch. Biochem. Biophys. 1995, 321: 319 - 6
Hart BP.Haile WH.Licato NJ.Bolanowska WE.McGuire JJ.Coward JK. J. Med. Chem. 1996, 39: 56 - 7
Tsukamoto T.Kitazume T.McGuire JJ.Coward JK. J. Med. Chem. 1996, 39: 66 - 8
McGuire JJ.Hart BP.Haile WH.Magee KJ.Rhee M.Bolanowska WE.Russell C.Galivan J.Paul B.Coward JK. Biochem. Pharmacol. 1996, 52: 1295 - 9
Fluorine-Containing
Amino Acids, Synthesis and Properties
Kukhar VP.Soloshonok VA. Wiley; Chichester: 1995. - 10
Sutherland A.Willis CL. Nat. Prod. Rep. 2000, 17: 621 - 11
Asymmetric
Fluoroorganic Chemistry: Synthesis, Applications, and Future Directions
Ramachandran PV. American Chemical Society; Washington D.C.: 2000. - 12
Enantiocontrolled
Synthesis of Fluoroorganic Compounds: Stereochemical Challenges
and Biomedical Targets
Soloshonok VA. Wiley; Chichester: 1999. - 13
Konas DW.Coward JK. Org. Lett. 1999, 1: 2105 - 14
Konas DW.Coward JK. J. Org. Chem. 2001, 66: 8831 - 15 J. J. Pankuch, unpublished results;
for a closely related FRET peptide substrate, see:
Pankuch JJ.Coward JK. Bioorg. Med. Chem. Lett. 2001, 11: 1561 - 16
McGuire JJ.Coward JK. In Folates and Pterins Vol. 1:Blakley RL.Benkovic SJ. Wiley; New York: 1984. p.135 - 17
Liang X.Andersch J.Bols M. J. Chem. Soc., Perkin Trans. 1 2001, 2136 - 18
Kim KS.Qian L. Tetrahedron Lett. 1993, 34: 7195 - 19
Otaka A.Miyoshi K.Burke TR.Roller PP.Kubota H.Tamamura H.Fujii N. Tetrahedron Lett. 1995, 36: 927 - 20
Delle Monache G.Di Giovanni MC.Maggio F.Misiti D.Zappia G. Synthesis 1995, 1155 - 21
Leanna MR.Sowin TJ.Morton HE. Tetrahedron Lett. 1992, 33: 5029 - 22
Jurczak J.Gryko D.Kobrzycka E.Gruza H.Prokopowicz P. Tetrahedron 1998, 54: 6051 - 23
Hallinan EA.Fried J. Tetrahedron Lett. 1984, 25: 2301 - 24
Barton DHR.McCombie SW. J. Chem. Soc., Perk. Trans. 1 1975, 1574 - 25
Chatgilialoglu C.Ferreri C. Res. Chem. Intermed. 1993, 19: 755 - 26
Studer A.Amrein S. Synthesis 2002, 835 - 27
Barton DHR.Jaszberenyi JC. Tetrahedron Lett. 1989, 30: 2619 - 28
Barton DHR.Jang DO.Jaszberenyi JC. Tetrahedron Lett. 1990, 31: 4681 - 29
Barton DHR.Jang DO.Jaszberenyi JC. Tetrahedron Lett. 1991, 32: 7187 - 30
Barton DHR.Jang DO.Jaszberenyi JC. Tetrahedron Lett. 1992, 33: 2311 - 31
Barton DHR.Jang DO.Jaszberenyi JC. Tetrahedron 1993, 49: 7193 - 32
Barton DHR.Jang DO.Jaszberenyi JC. J. Org. Chem. 1993, 58: 6838 - 33
Barton DHR.Jacob M. Tetrahedron Lett. 1998, 39: 1331 - 34
Jang DO.Cho DH.Barton DHR. Synlett 1998, 39 - 35
Zalkin H. Adv. Enzymol. Relat. Areas Mol. Biol. 1993, 66: 203 - 36
Zalkin H.Smith JL. Adv. Enzymol. Relat. Areas Mol. Biol. 1998, 72: 87 - 37
Huang XY.Holden HM.Raushel FM. Ann. Rev. Biochem. 2001, 70: 149 - 38
Tsukamoto T.Coward JK. J. Org. Chem. 1996, 61: 2497 -
39a
Meffre P.Dave RH.Leroy J.Badet B. Tetrahedron Lett. 2001, 42: 8625 -
39b Note added in proof: A
recently published correction to Ref. 39a indicates that the reported synthesis
of l-4,4-difluoroglutamine is in error;
the product isolated was l-4,4-difluoroglutamic
acid, see:
Meffre P.Dave RH.Leroy J.Badet B. Tetrahedron Lett. 2002, 43: 6279 . Thus, removal of the Cbz group in 15 (Scheme 3) by catalytic hydrogenolysis in modest yield (ca 50%) as reported for the racemic material in Ref. 38 represents the only tenable route to the synthesis of L-4,4-difluoroglutamine reported to date - 40
Ding Y.Wang JQ.Abboud KA.Xu YL.Dolbier WR.Richards NGJ. J. Org. Chem. 2001, 66: 6381 - 41
Zhao M.Li J.Song Z.Desmond R.Tschaen DM.Grabowski EJJ.Reider PJ. Tetrahedron Lett. 1998, 39: 5323 - 42
Kitagawa O.Hashimoto A.Kobayashi Y.Taguchi T. Chem. Lett. 1990, 1307 - 43
Mathias LJ. Synthesis 1979, 561 - 44
Yao R.Schneider E.Ryan TJ.Galivan J. Proc. Natl. Acad. Sci. USA 1996, 93: 10134 - 45
Licato NJ.Coward JK.Nimec Z.Galivan J.Bolanowska WE.McGuire JJ. J. Med. Chem. 1990, 33: 1022 - 47
Chave KJ.Auger IE.Galivan J.Ryan TJ. J. Biol. Chem. 2000, 275: 40365
References
Current Address: Department of Immunology NB-30, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, 44195.
46Pankuch, J.; Hui, M. (University of Michigan, Ann Arbor), unpublished results.