Abstract
Chlorophyll fluorescence imaging is a powerful tool to monitor temporal and spatial dynamics of photosynthesis and photosynthesis-related metabolism. In this communication, we use high resolution chlorophyll fluorescence imaging techniques under strictly controlled conditions to quantify day courses of relative effective quantum yield (φPSII ) of an entire leaf of the crassulacean acid metabolism (CAM) plant Kalanchoë daigremontiana at different light intensities. Careful interpretation of the combined gas exchange and fluorescence data, in combination with micro malate samples, allow the interpretation of underlying metabolic properties, such as leaf internal CO2 concentration (ciCO2
) and energy demand of the cells. Spatial variations of φPSII , which occur as running wave fronts at the transition from phase III to phase IV of CAM, may reflect spatial differences of ciCO2
, which are preserved in the tightly packed mesophyll cells of K. daigremontiana. An endogenous rhythm is driven by a master switch which mediates between malate storage and malate release to and from the vacuole, however, using fluorescence techniques, four different metabolic states can be distinguished which also account for the activity of phosphoenolpyruvate carboxylase.
Symbols and Abbreviations
φPSII : relative quantum efficiency of photosystem II
∫φPSII : relative quantum efficiency of photosystem II integrated over one leaf
ΔF/Fm ′: effective quantum yield of PS II (ΔF = Fm ′ - F)
CAM: crassulacean acid metabolism
ciCO2
: leaf internal CO2 concentration
HIGH: maximum fluorescence yield of the light-adapted leaf at the end of a saturating light pulse
LOW: ground fluorescence yield of the light-adapted leaf under low, steady state light intensities
PEPCase: phosphoenolpyruvate carboxylase
PFD: photon flux density (λ = 400 - 700 nm)
PS: photosystem
Rubisco: ribulose-1,5-bisphosphate carboxylase-oxygenase
Key words
Kalanchoë daigremontiana
- chlorophyll fluorescence imaging - photosynthetic efficiency - quantum yield of photosynthesis - crassulacean acid metabolism (CAM) - internal CO2 concentration - malate
References
01
Baker, N. R.,, Oxborough, K.,, Lawson, T.,, and Morison, J. I. L..
(2001);
High resolution imaging of photosynthetic activities of tissues, cells and chloroplasts in leaves.
J. Exp. Bot..
52
615-621
02
Beck, F.,, Blasius, B.,, Lüttge, U.,, Neff, R.,, and Rascher, U..
(2001);
Stochastic noise interferes coherently with a model biological clock and produces specific dynamic behaviour.
Proc. R. Soc. Lond. B Biol. Sci..
268
1307-1313
03
Blasius, B.,, Beck, F.,, and Lüttge, U..
(1998);
Oscillatory model of crassulacean acid metabolism: structural analysis and stability boundaries with a discrete hysteresis switch.
Plant Cell Environ..
21
775-784
04
Blasius, B.,, Neff, R.,, Beck, F.,, and Lüttge, U..
(1999);
Oscillatory model of crassulacean acid metabolism with a dynamic hysteresis switch.
Proc. R. Soc. Lond. B Biol. Sci..
266
93-101
05
Bohn, A.,, Geist, A.,, Rascher, U.,, and Lüttge, U..
(2001);
Responses to different external light rhythms by the circadian rhythm of Crassulacean acid metabolism in Kalanchoë daigremontiana.
.
Plant Cell Environ..
24
811-820
06
Borland, A.,, Hartwell, J.,, Jenkins, G. I.,, Wilkins, M. B.,, and Nimmo, H. G..
(1999);
Metabolite control overrides circadian regulation of phosphoenolpyruvate carboxylase kinase and CO2 fixation in crassulacean acid metabolism.
Plant Physiol..
121
889-896
07
Bradbury, M., and Baker, N. R..
(1981);
Analysis of the slow phase of the chlorophyll fluorescence induction curve. Changes in the redox state of photosystem II electron acceptors and fluorescence emission from photosystem I and II.
Biochim. Biophys. Acta.
635
542-551
08
Buchanan-Bollig, I. C.,, Fischer, A.,, and Kluge, M..
(1984);
Circadian rhythms in Kalanchoë: the pathway of 14 CO2 fixation during prolonged light.
Planta.
161
71-80
09
Chaerle, L., and Van der Straeten, D..
(2001);
Seeing is believing: imaging techniques to monitor plant health.
Biochem. Biophys. Acta.
1519
153-166
10
Chollet, R.,, Vidal, J.,, and O'Leary, M. H..
(1996);
Phosphoenolpyruvate carboxylase, a ubiquitous, highly regulated enzyme in plants.
Annu. Rev. Plant Physiol. Plant Mol. Biol..
47
273-298
11
Daley, P. F.,, Raschke, K.,, Ball, J. T.,, and Berry, J. A..
(1989);
Topography of photosynthetic activity of leaves obtained from video images of chlorophyll fluorescence.
Plant Physiol..
90
1233-1238
12 de Saussure, T.. (1804) Recherches chimiques sur la végetation. Paris; Chez la V.e Nyon
13
Farquhar, G. D., and Sharkey, T. D..
(1982);
Stomatal conductance and photosynthesis.
Annu. Rev. Plant Phys..
33
317-345
14
Genty, B.,, Briantais, J.-M.,, and Baker, N. R..
(1989);
The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence.
Biochim. Biophys. Acta.
990
87-92
15
Grams, T. E. E.,, Borland, A. M.,, Roberts, A.,, Griffiths, H.,, Beck, F.,, and Lüttge, U..
(1997);
On the mechanism of reinitiation of endogenous crassulacean acid metabolism rhythm by temperature changes.
Plant Physiol..
113
1309-1317
16
Heyne, B..
(1815);
On the deoxidation of the leaves of Cotyledon calycina.
.
Trans. Linn. Soc. Lond..
11
213-215
17
Hütt, M.-Th., and Neff, R..
(2001);
Quantification of spatiotemporal phenomena by means of cellular automata techniques.
Physica A.
289
498-516
18
Hütt, M.-Th., Neff, R.,, Busch, H.,, and Kaiser, F..
(2002);
A method for detecting the signature of spatiotemporal stochastic resonance.
Phys. Rev. E.
66
026117
19
Kluge, M..
(1969);
Veränderliche Markierungsmuster bei 14 CO2 -Fütterung von Bryophyllum tubiflorum zu verschiedenen Zeitpunkten der Hell/Dunkelperiode.
Planta.
88
113-129
20
Kluge, M.,, Brulfert, J.,, and Queiroz, O..
(1981);
Diurnal changes in the regulatory properties of PEP-carboxylase in Crassulacean Acid Metabolism (CAM).
Plant Cell Environ..
4
251-256
21 Kluge, M., and Ting, I. P.. (1978) Crassulacean acid metabolism. Analysis of an ecological adaptation. Berlin, Heidelberg, New York; Springer Verlag
22
Lichtenthaler, K. K.,, Lang, M.,, Sowinska, M.,, Heisel, F.,, and Miehé, J. A..
(1996);
Detection of vegetation stress via a new high resolution fluorescence imaging system.
J. Plant Physiol..
148
599-612
23
Lüttge, U..
(2000);
The tonoplast functioning as the master switch for circadian regulation of crassulacean acid metabolism (CAM).
Planta.
211
761-769
24
Lüttge, U..
(2002);
CO2 -concentrating: consequences in crassulacean acid metabolism.
J. Exp. Bot..
53
2131-2142
25
Lüttge, U., and Ball, E..
(1978);
Free running oscillations of transpiration and CO2 exchange in CAM plants without a concomitant rhythm of malate levels.
Z. Pflanzenphysiol..
90
69-77
26
Lüttge, U., and Beck, F..
(1992);
Endogenous rhythm and chaos in crassulacean acid metabolism.
Planta.
188
28-38
27
Maddes, T.,, Rascher, U.,, Siebke, K.,, Lüttge, U.,, and Osmond, B..
(2002);
Spatio-temporal variations in chlorophyll fluorescence during the phases of CAM, and during endogenous rhythms in continuous light, in thick leaves of Kalanchoë daigremontiana.
.
Plant Biol..
4
446-455
28
Marshall, B., and Biscoe, P. V..
(1980);
A model for C-3 leaves describing the dependence of net photosynthesis on irradiance: I-Derivation.
J. Exp. Bot..
31
29-39
29
Maxwell, K.,, von Caemmerer, S.,, and Evans, J. R..
(1997);
Is a low internal conductance to CO2 diffusion a consequence of succulence in plants with crassulacean acid metabolism?.
Aust. J. Plant Physiol..
24
777-786
30
Meyer, S., and Genty, B..
(1998);
Mapping intercellular CO2 mole fraction (Ci ) in Rosa rubiginosa leaves fed with abscisic acid by using chlorophyll fluorescence imaging.
Plant Physiol..
116
947-957
31
Nedbal, L.,, Soukupová, J.,, Kaftan, D.,, Whitmarsh, J.,, and Trtílek, M..
(2000);
Kinetic imaging of chlorophyll fluorescence using modulated light.
Photosynth. Res..
66
3-12
32
Nimmo, H..
(1998);
Circadian regulation of a plant protein kinase.
Chronobiol. Intern..
15
109-118
33
Nimmo, H..
(2000);
The regulation of phosphoenolpyruvate carboxylase in CAM plants.
Trends Plant Sci..
5
75-80
34
Osmond, C. B..
(1978);
Crassulacean acid metabolism: a curiosity in context.
Annu. Rev. Plant Physiol..
29
379-414
35 Osmond, C. B.,, Maxwell, K.,, Popp, M.,, and Robinson, S.. (1999) On being thick: fathoming apparently futile pathways of photosynthesis and carbohydrate metabolism in succulent CAM plants. Plant carbohydrate biochemistry. Bryant J. A., Burrell M. M., and Kruger N. J., eds. Oxford, Washington DC; BIOS Scientific Pub. pp. 183-200
36
Paillotin, P..
(1976);
Movement of excitations in the photosynthesis domain of photosystem II.
J. theor. Biol..
58
237-252
37 Rascher, U.. (2001) Der endogene CAM-Rhythmus von Kalanchoë daigremontiana als nichtlineares Modellsystem zum Verständnis der raum-zeitlichen Dynamik einer biologischen Uhr. Osnabrück, Germany; Der Andere Verlag, and PhD thesis, Institute of Botany, Darmstadt University of Technology
38
Rascher, U.,, Blasius, B.,, Beck, F.,, and Lüttge, U..
(1998);
Temperature profiles for the expression of endogenous rhythmicity and arrhythmicity of CO2 exchange in the CAM plant Kalanchoë daigremontiana can be shifted by slow temperature changes.
Planta.
207
76-82
39
Rascher, U.,, Hütt, M.-Th.,, Siebke, K.,, Osmond, C. B.,, Beck, F.,, and Lüttge, U..
(2001);
Spatio-temporal variations of metabolism in a plant circadian rhythm: the biological clock as an assembly of coupled individual oscillators.
Proc. Natl. Acad. Sci. USA.
98
11801-11805
40
Schreiber, U., and Bilger, W..
(1993);
Progress in chlorophyll fluorescence research: major developments during the past years in retrospect.
Proc. Bot..
53
151-173
41 Schreiber, U.,, Bilger, W.,, and Neubauer, C.. (1994) Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. Ecological studies, Vol. 100. Berlin, Heidelberg, New-York; Springer Verlag pp. 49-70
42
Siebke, K., and Weis, E..
(1995 a);
Assimilation images of leaves of Glechoma hederacea: analysis of non-synchronous stomata related oscillations.
Planta.
196
155-165
43
Siebke, K., and Weis, E..
(1995 b);
Images of chlorophyll-a-fluorescence in leaves: topography of photosynthetic oscillations in leaves of Glechoma hederacea.
.
Photosynth. Res..
45
225-237
44
Smith, J. A. C., and Heuer, S..
(1981);
Determination of the volume of intercellular spaces in leaves and some values for CAM plants.
Ann. Bot..
48
915-917
45
Spalding, M. H.,, Stumpf, D. K.,, Ku, M. S. B.,, Burris, R. H.,, and Edwards, G. E..
(1979);
Crassulacean acid metabolism and diurnal variations of internal CO2 and O2 concentrations in Sedum praealtum DC.
Austr. J. Plant Physiol..
6
557-567
46
Terashima, I., and Hikosaka, K..
(1995);
Comparative ecophysiology of leaf and canopy photosynthesis.
Plant Cell Environ..
18
1111-1128
47 Thornley, J. H. M.. (1976) Photosynthesis. Mathematical models in plant physiology, chap. 4. Sutcliffe J. F. and Mahlberg P., eds. London; Academic Press
48
Vidal, L., and Chollet, R..
(1997);
Regulatory phosphorylation of C4 PEP carboxylase.
Trends Plant Sci..
2
230-237
49
Vogelmann, T. C., and Han, T..
(2000);
Measurement of gradients of absorbed light in spinach leaves from chlorophyll fluorescence profiles.
Plant Cell Environ..
23
1303-1311
50
Warren, D. M., and Wilkins, M. B..
(1961);
An endogenous rhythm in the rate of dark fixation of carbon dioxide in leaves of Bryophyllum fedtschenkoi.
.
Nature.
191
686-688
51 Winfree, T. A., ed.. (1989) When time breaks down: the three-dimensional dynamics of electrochemical waves and cardiac arrhythmias. Princeton; Princeton Univ. Press
52 Winter, K., and Smith, J. A. C., eds.. (1996) Crassulacean acid metabolism. Ecological studies, Vol. 114. Berlin, Heidelberg, New-York; Springer Verlag
U. Rascher
Biosphere 2 Center Columbia University
P.O. Box 689 Oracle AZ 85623 USA
Email: urascher@bio2.columbia.edu
Section Editor: H. Rennenberg