References
For recent excellent reports on
the clerodane diterpenoids and related compounds including marine
natural products, see:
1a
Faulkner DJ.
Nat. Prod. Rep.
2002,
19:
1
1b
Capon RJ.
Eur. J. Org. Chem.
2001,
633
1c
Tokoroyama T.
Synthesis
2000,
611
1d
Capon RJ. In
Studies in Natural
Products Chemistry
Vol. 15:
.
Elsevier
Science B.V.;
Amsterdam:
1995.
p.289-326
2
Djura P.
Stierle DB.
Sullivan B.
Faulkner DJ.
Arnold E.
Clardy J.
J. Org. Chem.
1980,
45:
1435
3
Ciminiello P.
Dell’Aversano C.
Fattorusso E.
Magno S.
Pansini M.
J. Nat. Prod.
2000,
63:
263
4
Longley RE.
McConnell OJ.
Essich E.
Harmody D.
J. Nat. Prod.
1993,
56:
915
5 Wright AE, Cross SS, Burres NS, and Koehn F. inventors; Harbor Branch
Oceanographics Institution Inc. PCT WO 9112250A1.
August
22,
6
Nakamura M.
Suzuki A.
Nakatani M.
Fuchikami T.
Inoue M.
Katoh T.
Tetrahedron Lett.
2002,
43:
6929
7
Kawano H.
Itoh M.
Katoh T.
Terashima S.
Tetrahedron Lett.
1997,
38:
7769
8
Hagiwara H.
Uda H.
J. Org. Chem.
1988,
53:
2308
9
Iguchi K.
Sahashi A.
Kohno J.
Yamada Y.
Chem. Pharm. Bull.
1990,
38:
1121
The total synthesis of avarone
(i)and avarol (ii,
Figure 2), which correspond to the C4 endo-olefinic
isomers of neoavarone(10) and neoavarol(11), respectively, have been previously
achieved by several research groups, see:
10a
Ling T.
Poupon E.
Rueden EJ.
Kim SH.
Theodorakis EA.
J. Am. Chem. Soc.
2002,
124:
12261
10b
Ling T.
Xiang AX.
Theodorakis EA.
Angew. Chem. Int. Ed.
1999,
38:
3089
10c
Locke EP.
Hecht SM.
Chem.
Commun.
1996,
2717
10d
An J.
Wiemer DF.
J. Org. Chem.
1996,
61:
8775
10e
Sarma AS.
Chattopadhyay P.
J.
Org. Chem.
1982,
47:
1727
11 The starting material 8 was prepared from (+)-Wieland-Miescher
ketone analogue 7 (>99% ee)
according to the following Scheme 4. For further details, see: Nakatani M.
Nakamura M.
Suzuki A.
Inoue M.
Katoh T.
Org.
Lett.
2002,
4:
4483
12a
Taishi T.
Takechi S.
Mori S.
Tetrahedron Lett.
1998,
39:
4347
12b
Aristoff PA.
Harrison AW.
Huber AM.
Tetrahedron Lett.
1984,
25:
3955
12c
Welch SC.
Pao ASCP.
Tetrahedron
Lett.
1977,
505
12d
Feutrill GI.
Mirrington RN.
Aust.
J. Chem.
1972,
25:
1719
12e
Bartlett PA.
Johnson WS.
Tetrahedron
Lett.
1970,
4459
13
Spectral Data
for 9: 1H NMR (500 MHz, CDCl3): δ = 0.87 (s,
3 H), 0.98-1.03 (m, 1 H), 1.02 (d, J = 6.0
Hz, 3 H), 1.06 (s, 3 H), 1.19-1.44 (m, 5 H), 1.44-1.49
(m, 1 H), 1.51-1.62 (m, 1 H), 1.87-1.94 (m, 1
H), 2.02-2.12 (m, 2 H), 2.30-2.39 (m, 1 H), 2.56
(d, J = 14.4
Hz, 1 H), 2.68 (d, J = 14.4
Hz, 1 H), 4.35-4.39 (m, 1 H), 4.40-4.44 (m, 1
H), 4.61-4.65 (br s, 1 H), 6.68-6.73 (m, 1 H),
6.79-6.85 (m, 1 H), 7.00-7.09 (m, 2 H). 13C
NMR (125 MHz, CDCl3): δ = 17.6, 17.7,
20.6, 23.2, 27.8, 28.2, 33.0, 36.3, 36.5, 37.4, 40.2, 42.0, 48.1, 102.7,
115.5, 120.2, 125.1, 127.2, 132.9, 154.5, 160.1. IR (KBr): 3547,
3439, 2957, 2920, 2858, 1720, 1631, 1587, 1452, 1383, 1332, 1255,
1170, 1122, 1086, 1049, 1022, 991, 927, 891, 864, 754, 611, 530
cm-1. MS (CI): m/z = 299 [(M + H)+].
Anal. Calcd for C21H30O: C, 84.51; H, 10.13.
Found: C, 84.63; H, 10.33.
14a
Katoh T.
Nakatani M.
Shikita S.
Sampe R.
Ishiwata A.
Ohmori O.
Nakamura M.
Terashima S.
Org.
Lett.
2001,
3:
2701
14b
Miyata F.
Yoshida S.
Yamori T.
Katoh T.
Heterocycles
2001,
54:
619
14c
Saito N.
Obara Y.
Aihara T.
Harada S.
Shida Y.
Kubo A.
Tetrahedron
1994,
50:
3915
14d
Yoshida K.
Nakajima S.
Ohnuma T.
Ban Y.
Shibasaki M.
Aoe K.
Date T.
J.
Org. Chem.
1988,
53:
5355
14e
Wakamatsu T.
Nishi T.
Ohnuma T.
Ban Y.
Synth. Commun.
1984,
14:
1167
15
Procedure for
the Conversion of the Phenolic Compound 9 to (-)-Neoavarone
10. N,N-Bis(salicylidene)ethylenedi-iminocobalt(II)
(55 mg, 0.17 mmol) was added to a stirred solution of 9 (101 mg, 0.34 mmol) in dry DMF (10 mL)
at r.t. The suspension was stirred under an oxygen atmosphere (O2 balloon)
for 7 h at r.t. The mixture was concentrated in vacuo to afford
a residue, which was purified by column chromatography (hexane-ethyl
acetate, 20:1) to give 10 (96 mg, 91%)
as a yellow solid. Recrystallization from diethyl ether-hexane
afforded yellow prisms. 1H NMR (500 MHz, CDCl3): δ = 0.76
(dd, J = 12.1,
2.0 Hz, 1 H), 0.86 (s, 3 H), 0.94 (d, J = 6.6
Hz, 3 H), 1.05 (s, 3 H), 1.10-1.21 (m, 2 H), 1.32-1.38
(m, 1 H), 1.42-1.46 (m, 2 H), 1.47-1.57 (m, 2
H), 1.85-1.91 (m, 2 H), 2.06-2.12 (m, 1 H), 2.27-2.35
(m, 1 H), 2.40 (dd, J = 13.5,
0.8 Hz, 1 H), 2.57 (d, J = 13.5
Hz, 1 H), 4.44 (t, J = 1.4,
1 H), 4.46 (t, J = 1.7
Hz, 1 H), 6.45-6.47 (m, 1 H), 6.70 (dd, J = 10.0,
2.4, 1 H), 6.74 (d, J = 10.0
Hz, 1 H). 13C NMR (125 MHz, CDCl3): δ = 16.8,
17.6, 20.6, 22.7, 27.4, 28.1, 32.8, 35.3, 36.7, 37.2, 40.3, 43.0,
49.3, 103.2, 135.9, 136.0, 137.1, 147.3, 159.6, 187.2, 187.4. IR
(KBr): 3445, 2978, 2920, 2861, 1655, 1597, 1451, 1387, 1354, 1292,
1071, 897 cm-1. HRMS (FAB): m/z calcd for C21H29O2 [(M + H)+]:
313.2167. Found: 313.2195.
The reducing reagent Na2S2O4 has
been widely used for the conversion of sesquiterpenoidal quinones
to the corresponding hydroquinones. For recent examples, see: ref.10c,10d.
For additional examples, see:
16a
Kawai N.
Fujibayashi Y.
Kuwabara S.
Takao K.
Ijuin Y.
Kobayashi S.
Tetrahedron
2000,
56:
6467
16b
Watson AT.
Park K.
Wiemer DF.
J. Org. Chem.
1995,
60:
5102
16c
Harada N.
Sugioka T.
Ando Y.
Uda H.
Kuriki T.
J. Am. Chem.
Soc.
1988,
110:
8483
17
Spectral Data
for 11: 1H NMR (500 MHz, CDCl3): δ = 0.86 (s,
3 H), 1.01 (d, J = 6.0
Hz, 3 H), 0.98-1.02 (m, 1 H), 1.06 (s, 3 H), 1.24-1.36
(m, 2 H), 1.38-1.44 (m, 3 H), 1.46-1.51 (m, 1
H), 1.51-1.61 (m, 1 H), 1.87-1.92 (m, 1 H), 1.99-2.06 (m,
1 H), 2.07-2.12 (m, 1 H), 2.34 (tt, J = 8.3,
1.6 Hz, 1 H), 2.51 (d, J = 14.3
Hz, 1 H), 2.63 (d, J = 14.3,
1 H), 4.35 (s, 2 H), 4.40 (br s, 1 H), 4.43 (t, J = 1.8,
1 H), 6.52 (d, J = 2.8
Hz, 1 H), 6.55 (dd, J = 8.4,
2.9 Hz, 1 H), 6.59 (d, J = 8.4
Hz, 1 H). 13C NMR (125 MHz, CDCl3): δ = 17.6,
17.6, 20.6, 23.2, 27.7, 28.3, 33.0, 36.3, 36.5, 37.5, 40.3, 42.1,
48.2, 102.9, 113.9, 116.2, 119.4, 126.5, 148.6, 148.7, 160.0. IR
(KBr): 3252, 2971, 2919, 2857, 1632, 1503, 1453, 1402, 1188, 1154,
891, 810, 752 cm-1. HRMS (FAB): m/z calcd for C21H31O2 [(M + H)+]:
315.2324. Found: 315.2344.
18
Procedure for
the conversion of (-)-neoavarol (11) to(+)-aureol
(1). BF3
·OEt2 (148 µL,
1.1 mmol) was added to a stirred solution of 11 (35
mg, 0.1 mmol) in CH2Cl2 (20 mL) at -45 °C.
The mixture was gradually warmed up to -5 °C over
4 h. The reaction was quenched with sat. aq NaHCO3 (0.5
mL), and the mixture was extracted with CH2Cl2 (3 × 5 mL).
The combined extracts were washed with brine, and then dried over
Na2SO4. Concentration of the solvent in vacuo
afforded a residue, which was purified by column chromatography
(hexane-ethyl acetate, 10:1) to give 1 (33 mg,
93%) as a white solid. 1H NMR (500
MHz, CDCl3): δ = 0.78 (s, 3 H), 0.92
(s, 3 H), 1.06 (s, 3 H), 1.11 (d, J = 7.6
Hz, 3 H), 1.16-1.21 (m, 1 H), 1.32-1.38 (m, 1
H), 1.41-1.50 (m, 3 H), 1.52-1.61 (m, 1 H), 1.63-1.72
(m, 2 H), 1.74-1.87 (m, 2 H), 1.96 (d, J = 17.4
Hz, 1 H), 1.99-2.11 (m, 2 H), 3.37 (d, J = 17.4
Hz, 1 H), 4.29 (br s, 1 H), 6.49 (d, J = 2.7
Hz, 1 H), 6.54-6.63 (m, 2 H). 13C
NMR (125 MHz, CDCl3): δ = 17.3, 18.4,
20.2, 22.2, 27.9, 29.3, 29.8, 31.9, 33.8, 33.9, 37.4, 38.1, 39.3,
44.0, 82.4, 114.0, 115.1, 117.3, 122.2, 145.8, 148.3. IR (KBr):
17.3, 18.4, 20.2, 22.2, 27.9, 29.3, 29.8, 31.9, 33.8, 33.9, 37.4,
38.1, 39.3, 44.0, 82.4, 114.0, 115.1, 117.3, 122.2, 145.8, 148.3
cm-1. HRMS (EI): m/z calcd
for C21H30O2 (M+): 314.2246.
Found: 314.2241.
19 In our previous synthesis of (+)-aureol
(1),
[6]
the cis-fused decalin system 6 [(+)-arenarol] was
used as the substrate for the key acid-induced rearrangement/cyclization
reaction, while in the present study the trans-fused
decalin system 11 [(-)-neoavarol] is
employed instead of 6. In these rearrangement/cyclization
process, we believe that the same carbocation intermediate such
as II would be generated in situ from 6 and 11, respectively,
leading ultimately to the formation of (+)-aureol (1). And furthermore, we have already reported
a similar carbocation-mediated domino process that is initiated
by Lewis acid-induced epoxide-opening, followed by consecutive suprafacial
methanide and hydride migrations. For further details, see the literature cited
in ref. 11.