Synlett 2003(3): 0399-0401
DOI: 10.1055/s-2003-37131
LETTER
© Georg Thieme Verlag Stuttgart · New York

Molecular Diversity from Tonghaosu Analogues, Selective Reduction of the endo-Cyclic Double Bond of Tonghaosu Analogues and the Synthesis of Cyclopentenone Derivatives

Biao-Lin Yin, Jun-Fa Fan, Yang Gao, Yu-Lin Wu*
State Key Laboratory of Bioorganic & Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, China
e-Mail: ylwu@pub.sioc.ac.cn;
Further Information

Publication History

Received 9 January 2003
Publication Date:
07 February 2003 (online)

Abstract

The endo-cyclic double bond of unique spiroketal dienol-ether compounds 1, 2, 3 could be selectively reduced and thus obtained products could be further converted to cyclopentenone derivatives.

    References

  • 1 Partial result has been published in: Wu Z.-H., Wang J., Li J.-C.; X Y.-Z., Yu A.-L., Feng Z.-R., Shen J., Wu Y.-L., Guo P.-F., Wang Y.-N.; Natural Product R & D [China]; 1994, 6: 1
  • 2a Hegnauer R. In Chemotaxonomie der Pflanzen   Vol. 3:  Birkhauser Verlag; Basel: 1964.  p.447 
  • 2b Bohlmann F. Burkhardt T. Zdero C. Naturally Occurring Acetylenes   Academic Press; London: 1973. 
  • 2c Greger H. In The Biology and Chemistry of Compositae   Heywood VH. Harborne JB. Turner BL. Academic Press; London: 1977.  p.Chap. 32 
  • 2d Bohlmann F. In Chemistry and Biology of Naturally Occurring Acetylenes and Related Compounds   Lam J. Bretler H. Anason T. Hansen L. Elsvier; Amsterdam: 1988.  p.1 
  • 2e Zdero C. Bohlmann F. Plant Syst. Evol.  1990,  171:  1 
  • 3a Bohlmann F. Jastrow H. Ertringshausen G. Kramer D. Chem. Ber.  1964,  97:  801 
  • 3b Bohlmann F. Florentz G. Chem. Ber.  1966,  99:  990 
  • 4a Gao Y. Wu W.-L. Ye B. Zhou R. Wu Y.-L. Tetrahedron Lett.  1996,  37:  893 
  • 4b Gao Y. Wu W.-L. Wu Y.-L. Ye B. Zhou R. Tetrahedron  1998,  54:  12523 
  • 5 Fan J.-F. Zhang Y.-F. Wu Y. Wu Y.-L. Chinese J. Chem.  2001,  19:  1254 
  • 6 Fan J.-F. Yin B.-L. Zhang Y.-F. Wu Y.-L. Wu Y. Huaxue Xuebao  2001,  59:  1756 
  • 7 Pasto DJ. Taylor RT. In Organic Reactions   John Wiley and Sons, Inc.; Chichester: . 
  • 8 Wade PA. Amin NV. Synth. Commun.  1982,  287 
  • 9a Friedman L. Litle RL. Reichle WR. Org. Synth., Coll. Vol V   Wiley; New York: 1998. 
  • 9b Cusack NJ. Reese CB. Risius AC. Roozpeikar B. Tetrahedron  1976,  32:  2157 
  • 11a Satoh T. Nanba K. Suzuki S. Chem. Pharm. Bull.  1971,  19:  817 
  • 11b Narisada M. Horibe I. Watanabe F. Takeda K. J. Org. Chem.  1989,  54:  5308 
  • 11c Ren PD. Pan SF. Dong TW. Wu SH. Synth. Commun.  1959,  25:  3395 
  • 13 Fan J.-F. Wu Y. Wu Y.-L. J. Chem. Soc., Perkin Trans. 1  1999,  1189 
  • 15 Piancatelli G. D’Auria M. D’Onofrio F. Synthesis  1994,  867 
10

Typical Procedure for Diimide Reduction: To a solution of compound 1b (0.214 g, 1 mmol) in anhyd DME (5 mL) was added TsNHNH2 (930 mg, 5 mmol) and TMEDA (2 mL, 10 mmol). The mixture was stirred under reflux for 12 h before cooled to r.t., washed with H2O and brine, and then dried with MgSO4. After removal of the solvents, the residue was purified by chromatography on silica gel (eluting with 30:1 hexane-EtOAc) to give compound 4b (0.192 g, 89%). 1H NMR (600 MHz, CD3COCD3): d = 7.37 (2 H, d, J = 7.2Hz), 7.12 (2 H, m), 6.90 (1 H, m), 5.06 (1 H, s), 3.87 (1 H, m), 3.80 (1 H, m), 2.77 (1 H, m), 2.60 (1 H, m), 2.13-1.92 (6 H, m). MS (abundance): m/ z (%) = 217 (34.6), [M+ + 1], 216(100) [M+], 199 (7.3), 97 (85.3). IRmax: 3056, 2987, 2891, 1673, 1596, 1493, 1448, 1362 cm-1. Anal. Calcd for C14H16O2: C, 77.75; H, 7.47. Found: C, 77.74; H, 7.67.

12

Typical Procedure for NaBH 4 -NiCl 2 Reduction: To a solution of compound 1c (0.774 g, 3 mmol) in DME (5 mL) and anhyd MeOH was added NaBH4 (1.11 g, 30 mmol) at 0 °C, and then NiCl2 (0.2 g, 1.5 mmol) in portions. The mixture was stirred at r.t. for 6 h until the material disappeared according to TLC. The reaction was quenched by adding sat. NaHCO3 to pH = 8, then extracted with diethyl ether and the combined organic layers were washed with brine and dried over Na2SO4. Removal of solvents yielded a crude product, which was purified by chromato-graphy to afford 4c (0.702 g, 90%). 1H NMR (300 MHz, CD3COCD3): d = 7.20 (1 H, d, J = 1.6 Hz), 6.85-6.68 (2 H, m), 5.90 (2 H, s), 5.12 (1 H, d, J = 1.2 Hz), 4.00-3.87 (2 H, m), 2.88 (1 H, m), 2.66 (1 H, m), 2.23-2.02 (6 H, m). MS (abundance) m/z = 261 (22.1) [M+ + 1], 260 (100) [M+], 147 (16.3), 135 (17.0), 119 (9.1), 97 (82.3). IRmax: = 2895, 1671, 1597, 1503, 1488, 1443, 1349, 1247 cm-1. HRMS: Calcd for C15H16O4: 260.1049. Found: 260.1043.

14

Typical Procedure for Rearrangement of the Reduced Product to Cyclpentenone: To a solution of compound 4e (0.244 g, 1 mmol) in THF (5 mL) was added 2% HCl (3 mL). The reaction mixture was stirred at r.t. for 30 min until the starting material disappeared according to TLC. Then 5% NaOH was added to the mixture until pH = 13. The reaction mixture was stirred at r.t. for 4 h and then extracted with ether. The combined organic layers were washed with brine and dried over Na2SO4. Removal of solvents yielded a crude product, which was purified by chromatography to afford 8e (0.193 g, 80%). 1H NMR (300 MHz, CDCl3): d = 7.15 (2 H, d, J = 9.0 Hz), 6.90 (2 H, d, J = 9.0 Hz), 3.77 (s, 3 H), 3.56 (2 H, t, J = 4.3 Hz), 2.64 to ca. 2.55 (4 H, m), 2.48 (2 H, m), 1.76 (2 H, m). MS (m/z, abundance): 246 (M+, 100), 202 (72.3), 171 (61.2), 159 (92.5), 115 (45.1); IRmax: 3422, 2935, 2839, 1697, 1605, 1359, 1033, 927, 834, 754 cm-1. Anal. Calcd for C15H18O3: C, 73.17; H, 7.32. Found: C, 73.01; H, 7.54.