Ultraschall Med 2003; 24(1): 40-44
DOI: 10.1055/s-2003-37411
Technik und Naturwissenschaft
© Georg Thieme Verlag Stuttgart · New York

Nicht-thermische, nicht-kavitative Wirkungen von Ultraschall

Non-thermal Non-cavitational Effects of UltrasoundE.  Rosenfeld1
  • 1Fachhochschule Merseburg, FB Informatik und Angewandte Naturwissenschaften
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
24. Februar 2003 (online)

Zusammenfassung

Die nicht-thermischen, nicht-kavitativen (NTNC-) Effekte von medizinischem Ultraschall basieren im Wesentlichen auf den unmittelbaren und mittelbaren Wirkungen des Schallstrahlungsdruckes. Der Artikel führt in die Biophysik der zugrunde liegenden Mechanismen ein und beschreibt anhand ausgewählter Beispiele mögliche klinische Implikationen. Es kann festgestellt werden, dass durch NTNC-Wirkungen im Allgemeinen kein zusätzliches Sicherheitsrisiko bei der Anwendung von diagnostischem Ultraschall entsteht. Signifikante Wirkungen werden erst unter therapeutischen Expositionsbedingungen beobachtet. Die Frage, ob die Impulsdopplerverfahren als völlig harmlos gelten können, ist zur Zeit noch nicht abschließend zu beantworten. Auch die synergistischen Effekte von Ultraschall und Kontrastmitteln sind noch wenig untersucht.

Abstract

The non-thermal, non-cavitational (NTNC-) effects of medical ultrasound are based essentially on the direct and indirect effects of the sound radiation pressure. This article introduces the biophysics of the basic mechanisms and describes possible clinical implications using selected examples. It has been determined that generally no additional risks ensue through the effects of NTNC used purely for diagnostic purposes. Significant effects can only be detected under the conditions which prevail during therapeutic exposure. The question as to whether the pulse Doppler technique is completely harmless cannot be answered conclusively at this time. The synergetic effects between ultrasound and contrast media have not yet been examined thoroughly.

Literatur

  • 1 Barnett S B, ter Haar G R, Ziskin M C, Rott H D, Duck F A, Maeda K. International recommendations and guidelines for the safe use of diagnostic ultrasound in medicine.  Ultrasound Med Biol. 2000;  26 355-366
  • 2 Koch C. Thermische Wirkungen von Ultraschall.  Ultraschall Med. 2001;  22 146-152
  • 3 Jenne J. Kavitation in biologischem Gewebe.  Ultraschall Med. 2001;  22 200-207
  • 4 Beissner K. Die Schallstrahlungskraftmessung als Teil der Ultraschallexposimetrie.  Z Med Phys. 1997;  7 110-112
  • 5 Millner R (Hrsg). Wissensspeicher Ultraschalltechnik. Leipzig; Fachbuchverlag 1987: 121
  • 6 Gröschl M. Ultrasonic separation of suspended particles - Prt I: Fundamentals.  Acustica. 1998;  84 432-447
  • 7 King L V. On the acoustic radiation pressure on spheres.  Proc Roy Soc London. 1934;  147 212-240
  • 8 Yosioka K, Kawasima Y. Acoustic radiation pressure on compressible spheres.  Acoustica. 1955;  5 167-173
  • 9 Brayman A A, Miller M W. Bubble cycling and standing waves in ultrasonic cell lyses.  Ultrasound Med Biol. 1992;  18 411-420
  • 10 Miller D L, Williams A R. Nucleation and evolution of ultrasonic cavitation in a rotating exposure chamber.  J Ultrasound Med. 1992;  11 407-412
  • 11 Leighton T G, Walton A J, Pickworth M JW. Primary Bjerknes forces.  Eur J Phys. 1990;  11 47-50
  • 12 Bjerkness V FK. Die Kraftfelder. Braunschweig; Vieweg und Sohn 1909
  • 13 Crum L A. Bjerknes forces on bubbles in astationary sound field.  J Acoust Soc Am. 1975;  57 1363-1371
  • 14 Weiser M AH, Apfel R E. Interparticle forces between two fluid speres in an acoustic field.  Acoustica. 1984;  56 114-119
  • 15 Zheng X, Apfel R E. Acoustic interaction forces between two fluid spheres in an acoustic field.  J Acoust Soc Am. 1995;  97 2218-2226
  • 16 Nyborg W L. Theoretical criterion for acoustic aggregation.  Ultrasound Med Biol. 1989;  15 93-99
  • 17 Nyborg W L. Acoustic streaming. In: Mason W (Ed) Physical acoustics. Vol IIB. New York; Academic Press Inc. 1965: 265-331
  • 18 Starritt H C, Hoad C L, Duck F A, Nassiri D K, Summers I R, Vennart W. Measurement of acoustic streaming using magnetic resonance.  Ultrasound Med Biol. 2000;  26 321-333
  • 19 Liebermann L N. The second viscosity of liquids.  Phys Rev. 1949;  75 1415-1422
  • 20 Starrit H, Duck F A, Humphrey V F. An experimental investigation of streaming in pulsed diagnostic ultrasound beams.  Ultrasound Med Biol. 1989;  15 363-373
  • 21 Pohl P, Rosenfeld E, Millner R. Effects of Ultrasound on the steady-state transmembrane pH gradient and the Permeability of Acetic Acid through Bilayer Lipid.  Membranes Biochim Biophys Acta. 1993;  1145 279-283
  • 22 Pohl P, Antonenko Y A, Rosenfeld E. Effect of Ultrasound on the pH profiles in the unstirred layers near planar bilayer lipid membranes measured by microelectrodes.  Biochem Biophys Acta. 1993;  1152 155-160
  • 23 Wu J, Winkler A J, O'Neill T P. Effect of acoustic streaming on ultrasound heating.  Ultrasound Med Biol. 1994;  20 195-201
  • 24 Barnett S B, ter Haar G R, Ziskin M C, Rott H D, Duck F A, Maeda K. International recommendations and guidelines for the safe use of diagnostic ultrasound in medicine.  Ultrasound Med Biol. 2000;  26 355-366
  • 25 Barnett S B, ter Haar G R, Ziskin M C, Nyborg W L, Maeda K, Bang J. Current status of research on biophysical effects of ultrasound.  Ultrasound Med Biol. 1994;  20 205-218
  • 26 Goa L, Parker K, Lerner R, Levinson S. Imaging of the elastic properties of tissue - a review.  Ultrasound Med Biol. 1996;  22 959-977
  • 27 Nightingale K R, Nightingale R W, Palmeri M L, Trahey G F. A finite element model of remote palpation of breast lesions using radiation force: factors affecting tissue displacement.  Ultrason Imaging. 2000;  22 35-54
  • 28 Gavrilov L R, Gersuni G V, Ilynski O B, Sirotyuk M G, Tsirunlnikov E M, Shehekanov E E. Use of focused ultrasound for stimulation of nerve structures.  Akust Zh. 1975;  21 318-319
  • 29 Dalecki D, Raeman C H, Child S Z, Carstensen E L. Effects of pulsed ultrasound on the frogheart: III. The radiation force mechanism.  Ultrasound Med Biol. 1997;  23 275-285
  • 30 Gröschl M, Burger W, Handl B. Ultrasonic separation of suspended particles - Part III: Fundamentals.  Application in Biotechnology. 1998;  84 815-822
  • 31 Grundy M A, Bolek W E, Coakley W T, Benes E. Rapid agglutination testing in an ultrasonic standing wave.  Journal immunol methods. 1993;  165 47-57
  • 32 Thomas N E, Coakley W T. Measurement of antigen concentration by an ultrasound-enhanced latex immunoagglutination assay.  Ultrasound Med Biol. 1996;  22 1277-1284
  • 33 Dyson M, Pond J B, Woodward B, Broadbent J. The production of blood cell stasis and endothelial damage in the blood vessels of chick embryos treated with ultrasound in a stationary wave field.  Ultrasound Med Biol. 1974;  1 133-148
  • 34 ter Haar G, Wyard S J. Blood cell banding in ultrasonic standing waves.  Ultrasound Med Biol. 1978;  4 111
  • 35 Williams A R, Rosenfeld E H, Williams K A. Gelsectioning technique to evaluate phonophoresis in vitro.  Ultrasonics. 1990;  28 132-136
  • 36 Lenart I, Ausländer D. The effect of ultrasound on diffusion through membranes.  Ultrasonics. 1980;  216-218
  • 37 Rosenfeld E, Pohl P, Salz H. Experimental investigations on the influence of acoustic streaming on membrane processes. In: Tagkagi K (Ed) Proc Ultrasonic World Congress. Yokohama; 1997: 470-471
  • 38 Schmidt P, Rosenfeld E, Millner R, Czerner R, Schellenberger A. Theoretical and experimental studies on the influence of ultrasound on immobilized enzymes.  Biotech Bioeng. 1987;  30 928-935
  • 39 Nightingale K R, Kornguth P J, Trahey G E. The Use of Acoustic Streaming in Breast Lesion Diagnosis - A Clinical-Study.  Ultrasound Med Biol. 1999;  25 75-87
  • 40 Lauer G L, Burge R, Tang D B, Bass B G, Gomez E R, Alving B M. Effect of ultrasound on tissue-type plasminogen activiator-induced thrombolysis.  Circulation. 1992;  86 1257-1264
  • 41 Behrens S, Daffershofer M, Spiegel D, Hennerice M. Low-frequency, low-intensity ultrasound accelerates thrombolysis through the skull.  Ultrasound Med Biol. 1999;  25 269-273
  • 42 Riggs P N, Rancis C W, Bartos S R, Penney D P. Ultrasound enhancement of rabbit femoral artery thrombolysis.  Cardiovascular Surgery. 1997;  5 201-207
  • 43 Akiyama M, Ishibashi T, Yamada T, Furuhata H. Low-frequency ultrasound penetrates the cranium and enhances thrombolysis in vitro.  Neurosurgery. 1998;  43 828-833
  • 44 Rosenfeld E, Romanowski U, Williams A R. Positive and negative effects of diagnostic intensities of ultrasound on erythrocyte blood group markers.  Ultrasonics. 1990;  28 155-158
  • 45 Miller D L, Lamore B J, Boraker D K. Lack of effect of pulsed ultrasound on AB0 antigens of human erythrocyte in vitro.  Ultrasound Med Biol. 1986;  12 209-216
  • 46 Pohl E, Rosenfeld E, Pohl P, Millner R. Effects of Ultrasound on Agglutination and Aggregation of Human Erythrocytes in vitro.  Ultrasound Med Biol. 1995;  21 711-719
  • 47 Hart J. The use of ultrasound therapy in wound healing.  J Wound Care. 1998;  7 25-28
  • 48 ter Haar G. Therapeutic ultrasound.  Europ J Ultrasound. 1999;  9 3-9
  • 49 Sakamoto S, Watanabe Y. Effects of existence of microbubbles for increase of acoustic streaming.  Jpn J Appl Phys. 1999;  38 3050-3052

Prof. Dr. E. Rosenfeld

Fachhochschule Merseburg · FB Informatik und Angewandte Naturwissenschaften

Geusaer Straße · 06217 Merseburg

eMail: eike.rosenfeld@in.fh-merseburg.de