Synthesis 2003(4): 0603-0622
DOI: 10.1055/s-2003-37649
FEATUREARTICLE
© Georg Thieme Verlag Stuttgart · New York

Allyltrichlorostannane Additions to α-Amino Aldehydes: Application to the Total Synthesis of the Aspartyl Protease Inhibitors l-682,679, l-684,414, l-685,434, and l-685,458

Luiz C. Dias*, Gaspar Diaz, Andrea A. Ferreira, Paulo R. R. Meira, Edílson Ferreira
Instituto de Química - Universidade Estadual de Campinas, UNICAMP, C.P. 6154, 13084-971, Campinas, SP, Brazil
Fax: +55(193)7883023; e-Mail: ldias@iqm.unicamp.br;
Further Information

Publication History

Received 16 October 2002
Publication Date:
07 March 2003 (online)

Abstract

The hydroxyethylene dipeptide isosteres l-682,679, l-684,414, l-685,434, and l-685,458 were synthesized in a few steps by a sequence involving an allyltrichlorostannane coupling with an α-amino aldehyde, followed by hydroboration of the corresponding 1,2-syn and 1,2-anti amino alcohols to give the diols, lactonization under TPAP conditions, lactone opening, and peptide coupling with the desired amine or dipeptide amide. The present synthetic approach represents a practical entry to a large range of other dipeptide isosteres.

    References

  • 1a Vacca JP. Condra JH. Drug Discov. Today  1997,  2:  261 
  • 1b Steele FR. Nature Med.  1996,  2:  257 
  • 1c Huff JR. J. Med. Chem.  1991,  34:  2305 
  • 1d Prasad JVNV. Rich DH. Tetrahedron Lett.  1990,  31:  1803 
  • 2 Wlodawer A. Vondrasek J. Annu. Rev. Biophys. Biomol. Struct.  1998,  27:  249 
  • 3 Babine RE. Bender SL. Chem. Rev.  1997,  97:  1359 
  • 4 Tomasselli AG. Heinrikson RL. Biochim. Biophys. Acta  2000,  189 
  • 5 For a comparative quantitative structure-activity relationship study on anti-HIV drugs, see: Garg R. Gupta SP. Gao H. Babu MS. Debnath AK. Hansch C. Chem. Rev.  1999,  99:  3525 
  • 6 Lyle TA. Wiscount CM. Guare JP. Thompson WJ. Anderson PS. Darke PL. Zugay JA. Emini EA. Schleif WA. Quintero JC. Dixion RAF. Sigal IS. Huff JR. J. Med. Chem.  1991,  34:  1228 
  • 7 Panchagnula R. Thomas NS. Int. J. Pharm.  2000,  201:  131 
  • For the synthesis of analogues of l-685,434, see:
  • 8a Litera J. Budesinsky M. Urban J. Soucek M. Collect. Czech. Chem. Commun.  1998,  63:  231 
  • 8b Litera J. Weber J. Krizova I. Pichova I. Konvalinka J. Fusek M. Soucek M. Collect. Czech. Chem. Commun.  1998,  63:  541 
  • 8c Evans BE. Rittle KE. Homnick CF. Springer JP. Hirshfield J. Veber DF. J. Org. Chem.  1985,  50:  4615 
  • 9 Thompson WJ. Fitzgerald PMD. Holloway MK. Emini EA. Darke PL. McKeever BM. Schleif WA. Quintero JC. Zugay JA. Tucker TJ. Schwering JE. Homnick CF. Nunberg J. Springer JP. Huff JR. J. Med. Chem.  1992,  35:  1685 
  • 10 For the synthesis of analogues of l-682,679, see: de Solms SJ. Giuliani EA. Guare JP. Vacca JP. Sanders WM. Graham SL. Wiggins JM. Darke PL. Sigal IS. Zugay JA. Emini EA. Schleif WA. Quintero JC. Anderson PS. Huff JR. J. Med. Chem.  1991,  34:  2852 
  • 11 Evans J. Chem. Brit.  2001,  April:  47 
  • 12 Pesti JA. Chorvat RJ. Huhn GF. Chem. Innovation  2000,  October:  28 
  • 13 de Clercq E. Pure Appl. Chem.  2001,  73:  55 
  • 14 Ghosh AK. Shin D. Mathivanan P. Chem. Commun.  1999,  1025 
  • 15 Li YM. Xu M. Lai MT. Huang Q. Castro JL. DiMuzio-Mower J. Harrison T. Lellis C. Nadin A. Neduvelil JG. Register RB. Sardana MK. Shearman MS. Smith AL. Shi XP. Yin KC. Shafer JA. Gardell SJ. Nature (London)  2000,  405:  689 
  • 16 Li YM. Lai MT. Xu M. Huang Q. DiMuzio-Mower J. Sardana MK. Shi XP. Yin KC. Shafer JA. Gardell SJ. Proc. Natl. Acad. Sci. U.S.A.  2000,  97:  6138 
  • 17 Shearman MS. Beher D. Clarke EE. Lewis HD. Harrison T. Hunt P. Nadin A. Smith AL. Stevenson G. Castro JL. Biochemistry  2000,  39:  8698 
  • 18 Nadin A. López JMS. Neduvelil JG. Thomas SR. Tetrahedron  2001,  57:  1861 
  • 19 Dias LC. Giacomini R. J. Braz. Chem. Soc.  1998,  9:  357 ; Chem. Abstr. 1999, 130, 66177
  • (a) Evans DA. Coleman PJ. Dias LC. Angew Chem., Int. Ed. Engl.  1997,  36:  2738 
  • (b) Evans DA. Trotter BW. Cote B. Coleman PJ. Dias LC. Tyler AN. Angew Chem., Int. Ed. Engl.  1997,  36:  2744 
  • 20 Dias LC. Giacomini R. Tetrahedron Lett.  1998,  39:  5343 
  • 21 Dias LC. Meira PRR. Ferreira E. Org. Lett.  1999,  1:  1335 
  • 22 Dias LC. Meira PRR. Synlett  2000,  37 
  • 23 Dias LC. Ferreira E. Tetrahedron Lett.  2001,  42:  7159 
  • 24 Dias LC. Ferreira AA. Diaz G. Synlett  2002,  1845 
  • 25 Liu HJ. Shia KS. Shang X. Zhu BY. Tetrahedron  1999,  55:  3803 
  • 27a Narayanan BA. Bunnelle WH. Tetrahedron Lett.  1987,  28:  6261 
  • 27b Bunnelle WH. Narayanan BA. Org. Synth.  1990,  69:  89 
  • 28 (a) Fehrentz JA. Castro B. Synthesis  1983,  676 
  • 28 (b) Saari WS. Fisher TE. Synthesis  1990,  453 
  • These aldehydes should be freshly prepared before use. Attempts to purify aldehydes 13a-c by silica gel chromatography resulted in partial racemization. Since the diastereoselectivity of the reactions of these aldehydes with allylsilanes depends on their diastereomeric purity, crude aldehydes were used in all of the studies described in the text
  • For optical stability studies of N-protected α-amino aldehydes, see:
  • 29a Ito A. Takahashi R. Baba Y. Chem Pharm. Bull.  1975,  23:  3081 
  • 29b Garner P. Park JM. J. Org. Chem.  1987,  52:  2361 
  • 29c Jurczak J. Golebiowski A. Chem. Rev.  1989,  89:  149 
  • 29d Myers AG. Zhong BY. Movassaghi M. Kung DW. Lanman BA. Kwon S. Tetrahedron Lett.  2000,  41:  1359 
  • 30 For a review of the synthesis of vicinal amino alcohols, see: Bergmeier SC. Tetrahedron  2000,  56:  2561 
  • 31 For a review about recent advances in the synthesis of peptides, see: Nájera C. Synlett  2002,  1388 
  • 32 For an interesting paper dealing with the question of configurational stability at the stereogenic center next to the aldehyde function in dipeptide aldehydes, see: Reetz MT. Griebenow N. Liebigs Ann. Chem.  1996,  335 
  • 33 Benedetti F. Miertus S. Norbedo S. Tossi A. Zlatoidzky P. J. Org. Chem.  1997,  62:  9348 
  • 35 The influence of an intramolecular hydrogen bond in the stereoselection of α-amino carbonyl compounds has been described: Pace RD. Kabalka GW. J. Org. Chem.  1995,  60:  4838 
  • 36 Hoffman RV. Maslouch N. Cervantes-Lee F. J. Org. Chem.  2002,  67:  1045 
  • 37a Mitsunobu O. Synthesis   1981.  p.1 
  • 37b Dodge JA. Trujillo JI. Presnell M. J. Org. Chem.  1994,  59:  234 
  • 37c Martin SF. Dodge JA. Tetrahedron Lett.  1991,  32:  3017 
  • 38a D’Aniello F. Mann A. Mattii D. Taddei M. J. Org. Chem.  1994,  59:  3762 
  • 38b Ciapetti P. Taddei M. Ulivi P. Tetrahedron Lett.  1994,  35:  3183 
  • 38c Ciapetti P. Falorni M. Taddei M. Tetrahedron  1996,  52:  7379 
  • 39 This compound has been prepared earlier by Taddei and co-workers. The 1H NMR data for our compound is consistent with the described 1H NMR data reported by Taddei et al., but the 13C NMR data are not. According to Taddei et al., there are no chemical shifts between 60 and 80 ppm, and we observed 2 signals, at 65 and 75 ppm, attributed to CHN and CHOH, respectively, as expected: D’Aniello F. Taddei M. J. Org. Chem.  1992,  57:  5247 
  • 41a Ley SV. Norman J. Griffith WP. Marsden SP. Synthesis  1994,  639 
  • 41b Bloch R. Brillet C. Synlett  1991,  829 
  • For other synthesis of these lactones, see:
  • 42a Ghosh AK. Fidanze S. J. Org. Chem.  1998,  63:  6146 
  • 42b Ghosh AK. McKee SP. Thompson WJ. Darke PL. Zugay JC. J. Org. Chem.  1993,  58:  1025 
  • 42c Pégorier L. Larchevêque M. Tetrahedron Lett.  1995,  36:  2753 
  • 42d

    See also Ref. [8c]

  • 43a Dess DB. Martin JC. J. Am. Chem. Soc.  1991,  113:  7277 
  • 43b Dess DB. Martin JC. J. Org. Chem.  1983,  48:  4155 
  • 43c Ireland RE. Liu LB. J. Org. Chem.  1993,  58:  2899 
  • 44 Heathcock CH. Pirrung MC. Sohn JE. J. Org. Chem.  1979,  44:  4294 
  • 45 Nadin A. Owens AP. Castro JL. Harrison T. Shearman MS. Bioorg. Med. Chem. Lett.  2003,  13:  37 
34

Attempts to use allylsilanes 6 and 8 with other Lewis acids (TiCl4, BF3·OEt2) as well as attempts to mix these allylsilanes and the aldehydes 13a-c before addition of SnCl4 led to poor yields, loss of the Boc protecting group, and recovered starting material.

40

Alcohols 27 and 28 have been prepared previously by Taddei and co-workers, but our 13C NMR data are not consistent with the described data reported in that work, although consistent with the expected structure. See Ref. [40]

47

After re-examining our original 13C NMR spectrum of l-685-458 (3) we observed that in our first publication in Synlett (see Ref. [25] of this manuscript) we had mistakenly referenced the central line of the residual DMSO peak at 41.9 and not 39.7, as expected.