References
1a
Kaes C.
Katz A.
Hosseini MW.
Chem. Rev.
2000,
100:
3553
1b
Constable EC.
Adv. Inorg. Chem.
1989,
34:
1
2
Ward MD.
J.
Chem. Soc., Dalton Trans.
1994,
3095
3
Ward MD.
McCleverty JA.
Jeffery JC.
Coord. Chem. Rev.
2001,
222:
251
4
Newkome GR.
Hager DC.
J. Org. Chem.
1982,
47:
599
5
Hanan GS.
Lehn J.-M.
Kyritsakas N.
Fischer J.
J. Chem. Soc., Chem. Commun.
1995,
765
6
Hanan GS.
Schubert US.
Volkmer D.
Riviere E.
Lehn J.-M.
Kyritsakas N.
Fischer J.
Can.
J. Chem.
1997,
75:
169
7
Bolm C.
Ewald M.
Felder M.
Schlingloff G.
Chem. Ber.
1992,
125:
1169
8
Deshayes K.
Broene RD.
Chao I.
Knobler CB.
Diederich F.
J.
Org. Chem.
1991,
56:
6787
9
Rottlander M.
Boymond L.
Berillon L.
Lepretre A.
Varchi G.
Avolio S.
Laaziri H.
Queguiner G.
Ricci A.
Cahiez G.
Knochel P.
Chem.-Eur.
J.
2000,
6:
767
10
Berillon L.
Lepretre A.
Turck A.
Ple N.
Queguiner G.
Cahiez G.
Knochel P.
Synlett
1998,
1359
11
Bonnet V.
Mongin F.
Trecourt F.
Queguiner G.
Knochel P.
Tetrahedron
Lett.
2001,
42:
5717
12
Trecourt F.
Gervais B.
Mallet M.
Queguiner G.
J. Org. Chem.
1996,
61:
1673
13
Knochel P.
Almena Perea JJ.
Jones P.
Tetrahedron
1998,
54:
8275
14
Zhu L.
Wehmeyer RM.
Rieke RD.
J.
Org. Chem.
1991,
56:
1445
15
Turck A.
Ple N.
Lepretre-Gaquere A.
Queguiner G.
Heterocycles
1998,
49:
205
16
Gros P.
Fort Y.
Synthesis
1999,
754
17
Savage SA.
Smith AP.
Fraser CL.
J. Org. Chem.
1998,
63:
10048
18
Khan MA.
Tuck DG.
Acta Cryst., Sect. C:
Cryst. Struct. Commun.
1984,
40:
60
19
General Procedure: A
flame-dried Schlenk tube was charged with Pd(PPh3)4 and
2-halopyridine under argon. 2-Pyridylzinc bromide (THF solution)
was then added by syringe. The mixture was stirred at r.t. for several
hours, and was poured into an aq EDTA/Na2CO3 solution.
After the precipitate had dissolved, the mixture was extracted with Et2O
(3 ¥ 50 mL), and dried over Na2SO4.
The solvent was evaporated and the residue was chromatographed on
an alumina column (neutral, Brockmann I) with 10:1 hexane:EtOAc.
20
Compound 3c: 1:
4.5 mmol; 2c: 2.91 mmol; Pd(PPh3)4: 0.06
mmol. Chromatographed with 10:1 hexane:EtOAc as eluent to yield
a colorless liquid. 1H NMR (300 MHz, CDCl3): δ = 8.64
(d, J = 4.8
Hz, 1 H, H6
′), 8.49 (d, J = 4.4 Hz,
1 H, H6), 7.80-7.73 (m, 2 H, H3
′
,4
′),
7.56 (d, J = 7.7
Hz, 1 H, H 4), 7.27-2.22 (m, 1 H, H5
′),
7.18 (d, J = 7.8,
4.7 Hz, 1 H, H5
′), 2.46 (s, 3 H,
Me). 13C NMR (75 MHz, CDCl3): δ = 159.0,
156.4, 148.6, 146.8, 139.2, 136.6, 132.3, 124.2, 123.1, 122.7, 20.0.
FAB/NBA: 171.1 [MH+]. Compounds 3d-f: 3.0 mmol scale
with 2 mol% Pd(PPh3)4, chromatographed
with 10:1 hexane:EtOAc. NMR spectra are identical to those previously
reported.
[30]
21 Pd2(dba)3 and
P(o-tolyl)3 or P(2-furyl)3 were
tested as catalysts giving conversions of less than 20% with
the same reaction conditions. Although recent results showed that Pd[P(t-Bu)3]2 is
a powerful catalyst for coupling a broad range of aryl chlorides
and organozinc halides,
[22]
the
cost and the availability of the catalyst are a concern.
22
Dai C.
Fu GC.
J. Am. Chem. Soc.
2001,
123:
2719
23
Compound 3g: 4.3
mmol scale with 3 mol% Pd(PPh3)4, chromatographed
with a hexane:EtOAc solvent gradient (10:1 to 3:1). 1H
NMR (500 MHz, CDCl3): δ = 8.80 (d, J = 4.9 Hz,
1 H), 8.68 (br, 2 H), 8.40 (d, J = 7.9
Hz, 1 H), 7.83 (td, J
t = 7.7
Hz, J
d = 1.5
Hz, 1 H), 7.49 (dd, J = 4.9,
1.2 Hz, 1 H), 7.35 (dd, J = 7.3,
4.9 Hz, 1 H). 13C NMR (75 MHz, CDCl3): δ = 157.6,
154.1, 150.1, 149.5, 137.3, 124.9, 124.8, 123.0, 121.4. 121.3, 116.8. Compound 3h: 1.0 mmol scale with 3 mol% Pd(PPh3)4.
Extracted with CH2Cl2 and chromatographed
with a hexane:EtOAc solvent gradient (10:1 to 3:1 to 1:1). Mp: 174-175 °C
(EtOH). 1H NMR (300 MHz, CDCl3): δ = 9.42
(s, 1 H), 9.08 (s, 2 H), 8.84 (d, J = 5.0 Hz,
1 H), 8.75 (d, J = 4.6
Hz, 1 H), 8.43 (d, J = 7.9
Hz, 1 H), 8.33 (d, J = 4.1
Hz, 1 H), 7.83 (t, J = 7.7
Hz, 1 H), 7.64 (d, J = 7.7
Hz, 2 H, Ph), 7.56-7.45 (m, 3 H, Ph), 7.32 (dd, J = 7.4, 4.8
Hz, 1 H). 13C NMR (75 MHz, CDCl3): δ = 161.7, 157.2,
156.1, 155.4, 150.1, 149.5, 145.7, 137.0, 134.2, 133.2, 129.6, 129.2,
127.0, 123.9, 121.9, 121.2, 119.7. FAB/NBA: 311.1 [MH+]. Compound 3i: 3.0 mmol scale with 2 mol% Pd(PPh3)4,
chromatographed with 13:1 hexane:EtOAc. NMR spectra are identical
to those previously reported.24
24
Wakabayashi S.
Tanaka T.
Kubo Y.
Uenishi J.
Oae S.
Bull. Chem.
Soc. Jpn.
1989,
62:
3848
25
Fang Y.-Q.
Taylor NJ.
Hanan GS.
Loiseau F.
Passalaqua R.
Campagna S.
J. Am.
Chem. Soc.
2002,
124:
7912
26
Compound 5: 3.0
mmol scale with 2 mol% Pd(PPh3)4, chromatographed
with 10:1 hexane:EtOAc. NMR spectra are identical to those previously
reported.6
27
Compound 8: 2.0
mmol scale with 3 mol% Pd(PPh3)4, chromatographed
with 10:1 hexane:EtOAc. NMR spectra are identical to those previously
reported.28
28
Romero FM.
Ziessel R.
Tetrahedron Lett.
1995,
36:
6471
29a
Hanan GS.
Volkmer D.
Schubert US.
Lehn J.-M.
Baum G.
Fenske D.
Angew.
Chem., Int. Ed. Engl.
1997,
36:
1842
29b
Hanan GS.
Arana CR.
Lehn J.-M.
Fenske D.
Angew.
Chem., Int. Ed. Engl.
1995,
34:
1122
29c
Ceroni P.
Credi A.
Balzani V.
Campagna S.
Hanan GS.
Arana CR.
Lehn J.-M.
Eur.
J. Inorg. Chem.
1999,
1409
29d
Baxter PNW.
Compr. Supramol. Chem.
1996,
9:
165
30
Schubert US.
Eschbaumer C.
Heller M.
Org.
Lett.
2000,
3373