RSS-Feed abonnieren
DOI: 10.1055/s-2003-38745
Rapid and Efficient Synthesis of Functionalized Bipyridines
Publikationsverlauf
Publikationsdatum:
17. April 2003 (online)
Abstract
The Negishi reaction affords a mild and efficient method to convert chloro- and bromo-pyridines into functionalized 2,2′-bipyridines using commercially available starting materials. This method also extends to the conversion of dibromopyridines to 5- and 6-bromobipyridines, which are powerful synthons for incorporation into larger supramolecular systems.
Key words
palladium - catalysis - organometallic reagents - cross-coupling - bipyridines
-
1a
Kaes C.Katz A.Hosseini MW. Chem. Rev. 2000, 100: 3553 -
1b
Constable EC. Adv. Inorg. Chem. 1989, 34: 1 - 2
Ward MD. J. Chem. Soc., Dalton Trans. 1994, 3095 - 3
Ward MD.McCleverty JA.Jeffery JC. Coord. Chem. Rev. 2001, 222: 251 - 4
Newkome GR.Hager DC. J. Org. Chem. 1982, 47: 599 - 5
Hanan GS.Lehn J.-M.Kyritsakas N.Fischer J. J. Chem. Soc., Chem. Commun. 1995, 765 - 6
Hanan GS.Schubert US.Volkmer D.Riviere E.Lehn J.-M.Kyritsakas N.Fischer J. Can. J. Chem. 1997, 75: 169 - 7
Bolm C.Ewald M.Felder M.Schlingloff G. Chem. Ber. 1992, 125: 1169 - 8
Deshayes K.Broene RD.Chao I.Knobler CB.Diederich F. J. Org. Chem. 1991, 56: 6787 - 9
Rottlander M.Boymond L.Berillon L.Lepretre A.Varchi G.Avolio S.Laaziri H.Queguiner G.Ricci A.Cahiez G.Knochel P. Chem.-Eur. J. 2000, 6: 767 - 10
Berillon L.Lepretre A.Turck A.Ple N.Queguiner G.Cahiez G.Knochel P. Synlett 1998, 1359 - 11
Bonnet V.Mongin F.Trecourt F.Queguiner G.Knochel P. Tetrahedron Lett. 2001, 42: 5717 - 12
Trecourt F.Gervais B.Mallet M.Queguiner G. J. Org. Chem. 1996, 61: 1673 - 13
Knochel P.Almena Perea JJ.Jones P. Tetrahedron 1998, 54: 8275 - 14
Zhu L.Wehmeyer RM.Rieke RD. J. Org. Chem. 1991, 56: 1445 - 15
Turck A.Ple N.Lepretre-Gaquere A.Queguiner G. Heterocycles 1998, 49: 205 - 16
Gros P.Fort Y. Synthesis 1999, 754 - 17
Savage SA.Smith AP.Fraser CL. J. Org. Chem. 1998, 63: 10048 - 18
Khan MA.Tuck DG. Acta Cryst., Sect. C: Cryst. Struct. Commun. 1984, 40: 60 - 22
Dai C.Fu GC. J. Am. Chem. Soc. 2001, 123: 2719 - 24
Wakabayashi S.Tanaka T.Kubo Y.Uenishi J.Oae S. Bull. Chem. Soc. Jpn. 1989, 62: 3848 - 25
Fang Y.-Q.Taylor NJ.Hanan GS.Loiseau F.Passalaqua R.Campagna S. J. Am. Chem. Soc. 2002, 124: 7912 - 28
Romero FM.Ziessel R. Tetrahedron Lett. 1995, 36: 6471 -
29a
Hanan GS.Volkmer D.Schubert US.Lehn J.-M.Baum G.Fenske D. Angew. Chem., Int. Ed. Engl. 1997, 36: 1842 -
29b
Hanan GS.Arana CR.Lehn J.-M.Fenske D. Angew. Chem., Int. Ed. Engl. 1995, 34: 1122 -
29c
Ceroni P.Credi A.Balzani V.Campagna S.Hanan GS.Arana CR.Lehn J.-M. Eur. J. Inorg. Chem. 1999, 1409 -
29d
Baxter PNW. Compr. Supramol. Chem. 1996, 9: 165 - 30
Schubert US.Eschbaumer C.Heller M. Org. Lett. 2000, 3373
References
General Procedure: A flame-dried Schlenk tube was charged with Pd(PPh3)4 and 2-halopyridine under argon. 2-Pyridylzinc bromide (THF solution) was then added by syringe. The mixture was stirred at r.t. for several hours, and was poured into an aq EDTA/Na2CO3 solution. After the precipitate had dissolved, the mixture was extracted with Et2O (3 ¥ 50 mL), and dried over Na2SO4. The solvent was evaporated and the residue was chromatographed on an alumina column (neutral, Brockmann I) with 10:1 hexane:EtOAc.
20Compound 3c: 1: 4.5 mmol; 2c: 2.91 mmol; Pd(PPh3)4: 0.06 mmol. Chromatographed with 10:1 hexane:EtOAc as eluent to yield a colorless liquid. 1H NMR (300 MHz, CDCl3): δ = 8.64 (d, J = 4.8 Hz, 1 H, H6 ′), 8.49 (d, J = 4.4 Hz, 1 H, H6), 7.80-7.73 (m, 2 H, H3 ′ ,4 ′), 7.56 (d, J = 7.7 Hz, 1 H, H 4), 7.27-2.22 (m, 1 H, H5 ′), 7.18 (d, J = 7.8, 4.7 Hz, 1 H, H5 ′), 2.46 (s, 3 H, Me). 13C NMR (75 MHz, CDCl3): δ = 159.0, 156.4, 148.6, 146.8, 139.2, 136.6, 132.3, 124.2, 123.1, 122.7, 20.0. FAB/NBA: 171.1 [MH+]. Compounds 3d-f: 3.0 mmol scale with 2 mol% Pd(PPh3)4, chromatographed with 10:1 hexane:EtOAc. NMR spectra are identical to those previously reported. [30]
21Pd2(dba)3 and P(o-tolyl)3 or P(2-furyl)3 were tested as catalysts giving conversions of less than 20% with the same reaction conditions. Although recent results showed that Pd[P(t-Bu)3]2 is a powerful catalyst for coupling a broad range of aryl chlorides and organozinc halides, [22] the cost and the availability of the catalyst are a concern.
23Compound 3g: 4.3 mmol scale with 3 mol% Pd(PPh3)4, chromatographed with a hexane:EtOAc solvent gradient (10:1 to 3:1). 1H NMR (500 MHz, CDCl3): δ = 8.80 (d, J = 4.9 Hz, 1 H), 8.68 (br, 2 H), 8.40 (d, J = 7.9 Hz, 1 H), 7.83 (td, J t = 7.7 Hz, J d = 1.5 Hz, 1 H), 7.49 (dd, J = 4.9, 1.2 Hz, 1 H), 7.35 (dd, J = 7.3, 4.9 Hz, 1 H). 13C NMR (75 MHz, CDCl3): δ = 157.6, 154.1, 150.1, 149.5, 137.3, 124.9, 124.8, 123.0, 121.4. 121.3, 116.8. Compound 3h: 1.0 mmol scale with 3 mol% Pd(PPh3)4. Extracted with CH2Cl2 and chromatographed with a hexane:EtOAc solvent gradient (10:1 to 3:1 to 1:1). Mp: 174-175 °C (EtOH). 1H NMR (300 MHz, CDCl3): δ = 9.42 (s, 1 H), 9.08 (s, 2 H), 8.84 (d, J = 5.0 Hz, 1 H), 8.75 (d, J = 4.6 Hz, 1 H), 8.43 (d, J = 7.9 Hz, 1 H), 8.33 (d, J = 4.1 Hz, 1 H), 7.83 (t, J = 7.7 Hz, 1 H), 7.64 (d, J = 7.7 Hz, 2 H, Ph), 7.56-7.45 (m, 3 H, Ph), 7.32 (dd, J = 7.4, 4.8 Hz, 1 H). 13C NMR (75 MHz, CDCl3): δ = 161.7, 157.2, 156.1, 155.4, 150.1, 149.5, 145.7, 137.0, 134.2, 133.2, 129.6, 129.2, 127.0, 123.9, 121.9, 121.2, 119.7. FAB/NBA: 311.1 [MH+]. Compound 3i: 3.0 mmol scale with 2 mol% Pd(PPh3)4, chromatographed with 13:1 hexane:EtOAc. NMR spectra are identical to those previously reported.24
26Compound 5: 3.0 mmol scale with 2 mol% Pd(PPh3)4, chromatographed with 10:1 hexane:EtOAc. NMR spectra are identical to those previously reported.6
27Compound 8: 2.0 mmol scale with 3 mol% Pd(PPh3)4, chromatographed with 10:1 hexane:EtOAc. NMR spectra are identical to those previously reported.28