RSS-Feed abonnieren
DOI: 10.1055/s-2003-38746
Electron Deficient Dienes. 4. [1] A Synthetic Equivalent of 4-Methyleneglutaconic Acid, its Mono and Diethyl Esters and their Use in a Concise General Synthesis of Isophthalic Acids and Isophthalates
Publikationsverlauf
Publikationsdatum:
17. April 2003 (online)
Abstract
Reaction of a series of 2′-hydroxybenzophenone-3-carboxylic acid ethyl esters under Dakin reaction conditions affords isophthalic acid monoethyl esters, which can be converted into the corresponding diethyl isophthalates (6 examples) and isophthalic acid (1 example) by esterification and hydrolysis, respectively. This transformation renders the direct precursor of the benzophenones a synthetic equivalent of 4-methyleneglutaconic acid (4-methylenepent-2-enedioic acid) and its mono and diethyl esters.
Key words
Dakin reaction - Diels-Alder - inverse electron demand - isophthalates - isophthalic acids
- 1 Part 3 in this series:
Bodwell GJ.Hawco KM.da Silva RP. Synlett 2002, 179 - See for example:
-
2a
Finelli L.Lotti N.Munari A. J. Appl. Polym. Sci. 2002, 84: 2001 -
2b
Lodefier P.Jonas AM.Legras R. Macromolecules 1999, 32: 7135 -
2c
Liu AS.Liau WB.Chiu WY. Macromolecules 1998, 31: 6593 - See for example:
-
3a
Parker D.Feast WJ. Macromolecules 2001, 34: 5792 -
3b
Parker D.Feast WJ. Macromolecules 2001, 34: 2048 -
3c
Magnusson H.Malmström E.Hult A. Macromol. Rapid Commun. 1999, 20: 453 - See for example:
-
4a
Yamakawa Y.Ueda M.Takeuchi K.Asai M. Macromolecules 1999, 32: 8363 -
4b
Leon JW.Kawa M.Fréchet JMJ. J. Am. Chem. Soc. 1996, 118: 8847 - See for example:
-
5a
Moulton B.Lu J.Hajndl R.Hariharan S.Zaworotko MJ. Angew. Chem. Int. Ed. 2002, 41: 2821 -
5b
Hamilton AD.Choi K. J. Am. Chem. Soc. 2001, 123: 2456 -
5c
Ohata N.Masuda H.Yamauchi O. Angew. Chem. Int. Ed. 1996, 35: 531 -
5d
Zafar A.Yang J.Geib SJ.Hamilton AD. Tetrahedron Lett. 1996, 37: 2327 -
5e
Yang J.Marendaz J.-L.Geib SJ.Hamilton AD. Tetrahedron Lett. 1994, 35: 3665 -
5f
Valiyaveettil S.Enkelmann V.Müllen K. J. Chem. Soc., Chem. Commun. 1994, 2097 - See for example:
-
6a
Yang SY.Long LS.Huang RB.Zheng LS. Chem. Commun. 2002, 472 -
6b
Tan XS.Sun J.Xiang DF.Tang WX. Inorg. Chim. Acta 1997, 255: 157 - See for example:
-
7a
Fyles TM.Knoy R.Müllen K.Sieffert M. Langmuir 2001, 17: 6669 -
7b
Reb P.Margarit-Puri K.Klapper M.Müllen K. Macromolecules 2000, 33: 7718 -
7c
Pathare PM.Wilbur DS.Hamlin DK.Heusser S.Quadros EV.McLoughlin P.Morgan AC. Bioconjugate Chem. 1997, 8: 161 - See for example:
-
8a
Bodwell GJ.Miller DO.Vermeij RJ. Org. Lett. 2001, 3: 2093 -
8b
Bodwell GJ.Fleming JJ.Miller DO. Tetrahedron 2001, 57: 3577 -
8c
Bodwell GJ.Fleming JJ.Mannion MR.Miller DO. J. Org. Chem. 2000, 65: 5360 -
8d
Bodwell GJ.Bridson JN.Houghton TJ.Kennedy JWJ.Mannion MR. Chem.-Eur. J. 1999, 5: 1823 -
8e
Bodwell GJ.Bridson JN.Houghton TJ.Kennedy JWJ.Mannion MR. Angew. Chem., Int. Ed. Engl. 1996, 35: 1320 - 9
Bodwell GJ.Ernst L.Hopf H. Tetrahedron Lett. 1989, 30: 6005 - 10
Bodwell GJ.Frim R.Hopf H.Rabinovitz M. Chem. Ber. 1993, 126: 167 - 11
Ahn K.-D.Hall HK. J. Polym. Sci., Polym. Chem. 1981, 19: 629 - 12
Bodwell GJ.Pi Z. Tetrahedron Lett. 1997, 38: 309 - 13
Bodwell GJ.Pi Z.Pottie IR. Synlett 1999, 477 -
14a
Varma RS.Naicker KP. Org. Lett. 1999, 1: 189 -
14b
Lee JB.Uff BC. Quart. Rev. 1967, 21: 429 -
14c
Hassall CH. Org. React. 1957, 9: 73 -
14d
Baker W.Bondy HF.Gumb J.Miles D. J. Chem. Soc. 1953, 1615 -
14e
Dakin HD. Org. Synth., Coll. Vol. 1 Wiley; New York: 1941. p.149 -
14f
Baker W.Jukes EHT.Subrahmanyam CA. J. Chem. Soc. 1934, 1681 -
14g
Dakin HD. Am. Chem. J. 1909, 42: 477 -
14h See also:
Ogata Y.Sawaki Y. J. Org. Chem. 1969, 34: 3985 -
14i
Boeseken J.Cohen WD.Kip CJ. Recl. Trav. Chim. Pays-Bas 1936, 55: 815 - 17
Brown JB.Henbest HB.Jones ERH. J. Chem. Soc. 1950, 3634
References
Bodwell, G. J.; Hawco, K. M. unpublished results.
16Sample Procedure: 4,6-Indandicarboxylate Diethyl Ester ( 4): [9] [10] To a stirred suspension of NaH (60% dispersion in mineral oil, 35.2 mg, 0.88 mmol) in THF (15 mL) was added dropwise a solution of 11 (219.5 mg, 0.71 mmol) in THF (5 mL) and the resulting yellow solution was stirred for 10 min. To the resulting solution was added H2O2 (30% aq solution, 95.3 mg, 0.84 mmol) and the mixture was stirred for 20 h. The reaction mixture was concentrated under reduced pressure, and concentrated aq HCl solution (5 mL) was added. The resulting precipitate was collected by suction filtration and washed with a small amount of H2O. The solid was dried in vacuo and then suspended in absolute EtOH (25 mL). To this suspension was added concentrated H2SO4 (0.5 mL) and the mixture was heated at reflux for 11 h. The solvent was removed under reduced pressure and H2O (25 mL) was added. The mixture was then extracted with CH2Cl2 (3 × 25 mL). The combined organic layers were washed with sat. aq NaHCO3 solution, and dried over MgSO4. The solvent was removed under reduced pressure and the residue was subjected to silica gel column chromatography (20% EtOAc/hexane) to afford diester 4 (144.2 mg, 78%) as pale yellow crystals: Mp 43-45 °C. 1H NMR (500 MHz, CDCl3): δ = 8.49 (s, 1 H), 8.04 (s, 1 H), 4.390 (q, J = 7.2 Hz, 2 H), 4.384 (q, J = 7.1 Hz, 2 H), 3.32 (t, J = 7.4 Hz, 2 H), 2.97 (t, J = 7.4 Hz, 2 H), 2.13 (quint, J = 7.4 Hz, 4 H), 1.411 (t, J = 7.2 Hz, 3 H), 1.407 (t, J = 7.5 Hz, 2 H). 13C NMR (125 MHz, CDCl3): δ = 166.7, 166.5, 152.1, 146.6, 129.9, 129.1, 127.1, 61.3, 61.1, 34.3, 32.5, 25.2, 2 × 14.6. IR(nujol): ν = 1724 (s), 1299 (m), 1227 (s)cm-1. UV/Vis (CH2Cl2): λmax (log ε) = 302 (3.38) nm; MS (EI. 70 eV): m/z (%) = 262 (69) [M+], 233 (100), 117 (99). HRMS (EI): m/z calcd for C15H18O4 [M+]: 262.1205. Found: 262.1223. All other products were characterized as above.