Subscribe to RSS
DOI: 10.1055/s-2003-39893
Chiral Monomers with Minimal Functional Group Linkages for Suspension Co-polymerization: A Suzuki Coupling Approach
Publication History
Publication Date:
11 June 2003 (online)
Abstract
A new strategy for the synthesis of chiral monomers for co-polymerization with styrene is described. Suzuki coupling of 4-vinylphenylboronic acid with chiral aryl triflates 5 and 13, and subsequent elaboration has resulted in chiral monomers 9 and 10. One of these monomers 10 has subsequently been incorporated into a polystyrene gel-type resin 16 with a functional group loading of 0.48 mmolg-1.
Key words
palladium - polymers - amino alcohols - ligands - asymmetric catalysis
- 1
Kirschning A.Monenschein H.Wittenberg R. Angew. Chem., Int. Ed. 2001, 40: 650 -
2a
McNamarra CA.Dixon MJ.Bradley MA. Chem. Rev. 2002, 102: 3275 -
2b
Mahdavain A.-R.Khoee S. React. Funct. Polym. 2002, 50: 217 -
2c
Clapham B.Reger TS.Janda KD. Tetrahedron 2001, 57: 4637 -
2d
Abramson S.Bellocq N.Brunel D.Lasperas M.Moreau P. In Chiral Catalyst Immobilisation and RecyclingDe Vos DE.Vankelecom IFJ.Jaocbs PA. Wiley-VCH; Weinheim: 2000. p.261 -
2e
Shuttleworth SJ.Allin SM.Wislon RD.Nasturica D. Synthesis 2000, 1035 -
2f
Shuttleworth SJ.Allin SM.Sharma PK. Synthesis 1997, 1217 -
3a
Burguete MI.García-Verdugo E.Vincent MJ.Luis SV.Pennemann H.Graf von Keyserling N.Martens J. Org. Lett. 2002, 4: 3947 -
3b
Cornejo A.Fraile JM.García JI.García-Verdugo E.Gil MJ.Legarreta G.Luis SV.Martínez-Merino V.Mayoral JA. Org. Lett. 2002, 4: 3927 -
3c
Orlandi S.Mandoli A.Pini D.Salvadori P. Angew. Chem. Int. Ed. 2001, 40: 2519 -
3d
Itsuno S.El-Shehawy AA. Polym. Adv. Technol. 2001, 12: 670 -
3e
Itsuno S.Watanabe K.El-Shehawy AA. Adv. Synth. Catal. 2001, 343: 89 -
3f
Altava B.Burguete MI.Fraile JM.García JI.Luis SV.Mayoral JA.Vincent MJ. Angew. Chem. Int. Ed. 2000, 39: 1503 - 4
Sellner H.Rheiner PB.Seebach D. Helv. Chim. Acta 2002, 85: 352 -
5a
Sherrington DC. Chem. Commun. 1998, 2275 -
5b
Reger TS.Kim JD. Bioorg. Med. Chem. Lett. 2002, 12: 837 - 6
Pu L.Yu HB. Chem. Rev. 2001, 101: 757 -
7a
Vidal-Ferran A.Bampos N.Moyano A.Pericàs MA.Riera A.Sanders JKM. J. Org. Chem. 1998, 63: 6309 -
7b
Sung DWL.Hodge P.Stratford PW. J. Chem. Soc., Perkin Trans. 1 1999, 1463 -
7c
Sung DWL.Hodge P.Stratford PW. J. Chem. Soc., Perkin Trans. 1 1999, 2335 - 8 Suzuki coupling as a grafting strategy,
see:
Kell RJ.Hodge P.Nisar M.Williams RT. J. Chem. Soc., Perkin Trans. 1 2001, 3403 - 9
Ager DJ.Prakash I.Schaad DR. Chem. Rev. 1996, 96: 835 -
10a
Hassan J.Sévignon M.Gozzi C.Schulz E.Lemaire M. Chem. Rev. 2002, 102: 1359 -
10b
Hajduk PJ.Dinges J.Miknis GF.Merlock M.Middleton T.Kempf DJ.Egan DA.Walter KA.Robins TS.Shuker SB.Holzman TF.Fesik SW. J. Med. Chem. 1997, 40: 3144 - For solution phase Stille couplings of protected tyrosine triflate, see:
-
11a
Yao Z.-J.Gao Y.Burke TR. Tetrahedron: Asymmetry 1999, 10: 3727 -
11b
Yokomatsu T.Yamagishi T.Matsumoto K.Shibuya S. Tetrahedron 1996, 52: 11725 - 12
Farrall MJ.Fréchet JMJ. J. Org. Chem. 1976, 41: 3877 - 13
Caze C.Moualij NE.Hodge P.Lock CJ.Ma J. J. Chem. Soc., Perkin Trans. 1 1995, 345 - 14
Huguenin RL.Boissonnas RA. Helv. Chim. Acta 1961, 44: 213 - 15
Murata M.Watanabe S.Masuda Y. J. Org. Chem. 2000, 65: 164 - 16
Giroux A.Han Y.Prasit P. Tetrahedron Lett. 1997, 38: 3841 - 17
Wünsch JR. Rapra Review Reports 2000, 10: Report 112 - 18
Shieh W.-C.Carlson JA. J. Org. Chem. 1992, 57: 379 - 21
Bull SD.Davies SG.Jones S.Polywka MEC.Prasad RS.Sanganee HJ. Synlett 1998, 519 - 24
Suzuki T.Narisada N.Shibata T.Soai K. Polym. Adv. Technol. 1999, 10: 30 - 26 For a discussion of the mechanism
of catalysis by primary amine containing amino alcohols, see:
Itsuno I.Sakurai Y.Ito K.Maruyama T.Nakahama S.Fréchet JMJ. J. Org. Chem. 1990, 55: 304
References
The conditions previously optimised for the coupling of methyl ester 5 and 4-vinylphenylboronic acid were found to give incomplete conversion to Suzuki product 14 resulting in a tricky separation of unreacted triflate 13 and product 14.
20Methyl (2S)-2-N-(tert-butoxycarbonyl)-3-[p-(p-vinylphenyl)phenyl]-propanoate (14), Rf [CH2Cl2:MeOH (95:5)] 0.92; mp 110 °C; [α]D +61.6 (c 0.6, CHCl3); IR (CHCl3 solution)/cm-1 3429, 3365, 2979, 1740, 1712, 1498, 1366, 1166, 756; δH (250 MHz, CDCl3) 7.57-7.44 and 7.25-7.17 (8 H, m), 6.75 (1 H, dd, J = 17.6 Hz, 10.9 Hz), 5.78 (1 H, dd, J = 17.6 Hz, 0.9), 5.27 (1 H, dd, J = 10.9 Hz, 0.9 Hz), 5.02 (1 H, d, J = 7.7 Hz), 4.62 (1 H, d, J = 7.9 Hz), 3.73 (3 H, s), 3.19-3.05 (2 H, m), 1.42 (9 H, s); δC (62.9 MHz, CDCl3) 172.2, 155.0, 139.9, 139.3, 136.4, 136.2, 135.0, 129.6 (2 C), 126.9 (4 C), 126.5 (2 C), 113.8, 79.9, 54.2, 52.2, 37.8, 28.2 (3 C); m/z (FAB) 382 ([M + H]+, 7%), 326 (25), 193 (25), 154 (100), 57 (28); HRMS (FAB) C23H28NO4 [M + H]+ requires 382.2018, found 382.2004.
22(3S)-3-N-(tert-Butoxycarbonyl)-2-methyl-4-[p-(p-vinylphenyl)phenyl]-butan-2-ol,
Rf [CH2Cl2/MeOH (90:10)] 0.51;
mp 150-151 °C; [α]D -69.0
(c 2.0, CHCl3); IR (CHCl3 solution)/cm-1 3377,
2980, 1669, 1529, 1172, 757; δH (200 MHz, CDCl3)
7.52-7.45 and 7.29-7.26 (8 H, m), 6.76 (1 H, dd, J = 17.5 Hz, 10.8 Hz), 5.79
(1 H, d, J = 17.5 Hz), 5.27
(1 H, d, J = 10.8 Hz), 4.66
(1 H, d, J = 9.2 Hz), 3.74-3.70
(1 H, m), 3.12 (1 H, d, J = 13.8
Hz), 2.68 (1 H, d, J = 13.8
Hz), 2.58 (1 H, br s), 1.30 (15 H, m); δC (50.3
MHz, CDCl3) 156.5, 140.4, 138.6, 138.2, 136.4 (2 C),
129.6 (2 C), 127.0 (2 C), 126.8 (2 C), 126.6 (2 C), 113.8, 79.4,
72.9, 60.3, 35.5, 28.1 (3 C), 27.5, 26.5; m/z (FAB)
382 ([M + H]+, 2%), 373
(5), 309 (9), 301 (14), 193 (43), 57 (100); HRMS (FAB) C24H32NO3 [M + H]+ requires
382.2382, found 382.2399.
(3S)-3-Amino-2-methyl-4-[p-(p-vinylphenyl)phenyl]-butan-2-ol
(10), Rf [CH2Cl2/MeOH
(90:10)] 0.23; mp 114-115 °C; [α]D -44.2
(c 0.5, MeOH); IR (CHCl3 solution)/
cm-1 3402,
3343, 3280, 2976, 1497, 1389; δH (200 MHz, CD3OD)
7.57-7.44 and 7.32-7.28 (8 H, m), 6.75 (1 H, dd,
J = 17.8 Hz, 10.8
Hz), 5.79 (1 H, d, J = 17.8
Hz), 5.22 (1 H, d, J = 10.8
Hz), 3.02 (1 H, dd, J = 13.2
Hz, 2.7 Hz), 2.88 (1 H, dd, J = 10.7
Hz, 2.7 Hz), 2.34 (1 H, dd, J = 13.2
Hz, 10.7 Hz), 1.27 (3 H, s), 1.23 (3 H, s); δC (62.9
MHz, CD3OD) 139.6, 138.7, 138.0, 136.0, 135.8, 128.9
(2 C), 126.1 (2 C), 126.0 (2 C), 125.8 (2 C), 112.1, 71.5, 61.3,
37.1, 24.7, 22.9; m/z (FAB)
282 ([M + H]+, 56%),
264 (17), 222 (19), 193 (100), 88 (31), 43 (27); HRMS (FAB) C19H24NO [M + H]+ requires
282.1858, found 282.1858; Anal. Calcd for C19H23NO:
C, 81.10; H, 8.24; N, 4.98, found C, 80.59; H, 8.16; N, 4.73.
(3S)-4-Biphenyl-3-N-(tert-butoxycarbonyl)-2-methyl-butan-2-ol,
Rf [hexane/EtOAc (80:20)] 0.14;
mp 137-138 °C; [α]D -61.2
(c 1.0, CHCl3);IR (CHCl3 solution)/cm-1 3442,
2980, 1700, 1503, 1368, 1169; δH (250 MHz, CDCl3) 7.58-7.25
(9 H, m), 4.65 (1 H, d, J = 9.6
Hz), 3.80-3.69 (1 H, m), 3.13 (1 H, dd, J = 14.2
Hz, 3.4 Hz), 2.71 (1 H, br s), 2.62 (1 H, d, J = 14.2
Hz), 1.41-1.25 (15 H, m); δC (62.9 MHz,
CDCl3) 156.3, 141.0, 139.0, 137.9, 129.5, 128.6 (3 C), 126.9
(5 C), 79.2, 72.8, 60.2, 35.3, 28.1 (3 C), 27.4, 26.5;
m/z (FAB) 356 ([M + H]+,
19%), 300(57), 282(75), 167(100), 57(91); HRMS (FAB) C22H30NO3 [M + H]+ requires
356.2225, found 356.2225; Anal. Calcd. for C22H29NO3:
C, 74.33; H, 8.22; N, 3.94, found C, 73.82; H, 8.24; N, 4.06.
(3S)-3-Amino-4-biphenyl-2-methyl-butan-2-ol
(15), Rf [CH2Cl2/MeOH
(90:10)] 0.23; mp 65-66 °C; [α]D -40.2
(c 1.0, CHCl3); IR (nujol)/cm-1 3404,
3341, 3270, 1487, 754; δH (200 MHz, CD3OD)
7.60-7.54 and 7.44-7.29 (9 H, m), 3.03 (1 H, d, J = 13.4 Hz), 2.89 (1 H, d, J = 11.0 Hz), 2.35 (1 H, dd, J = 13.4 Hz, 11.0 Hz), 1.28
(3 H, s), 1.24 (3 H, s); δC (50.3 MHz, CD3OD)
142.3, 140.7 (2 C), 130.8 (2 C), 129.9 (2 C), 128.2 (3 C), 127.9
(2 C), 73.5, 63.2, 39.0, 26.6, 24.8; m/z (FAB) 256 ([M + H]+,
85%), 238 (35), 196 (20), 167 (100), 88 (24), 43 (28);
HRMS (FAB) C17H22NO [M + H]+ requires
256.1701, found 256.1706.
A dry 500 mL 3-necked flask equipped
with overhead stirrer, condenser and septum was charged with distilled water
(135 mL) which was subsequently degassed and purged with argon.
PVA (675 mg, 87-89% hydrolysed, average MW = 85000-146000)
was added and the reaction mixture was stirred at 125 °C
for 10 minutes before being cooled to 0 °C. Two further
dry flasks were separately charged with THF (50 mL) and toluene
(50 mL), each being degassed and purged with argon. The amino alcohol monomer 10 (1.84 g, 6.55 mmol) was added to the
THF ensuring dissolution before addition of the toluene. AIBN (211
mg, 1.28 mmol), styrene (9.94 mL, 86.7 mmol) and divinylbenzene
(5.25 mL, 29.5 mmol) were then added to the organic phase with each
of the monomers being washed with 1% aqueous NaOH (10 mL)
and water (2 × 10 mL) immediately prior to use. The monomer
phase was added via cannulation over a period of 10 minutes to the
cooled aqueous phase which was stirred at 350 RPM. The height of the
paddle impeller was positioned ˜ 3 cm below the surface of
the reaction mixture as this depth was found to visually reduce
horizontal flow. Stirring was then continued at 0 °C for
1 hour. The reaction mixture was then heated to 80 °C with
constant stirring at 350 RPM under argon for 18 hours. The polymer
beads were collected by filtration through a 100 micron mesh sieve
and washed with water (500 mL), THF (500 mL) and methanol (500 mL).
The polymeric material was then dried under reduced pressure at
40 °C to constant mass and sieved between 500 and 100 micron
mesh sieves affording cross-linked amino alcohol polymer(16) as colourless free flowing beads (3.40
g, 23%), IR (KBr disc)/cm-1 3446,
3025, 2923, 1601, 1493, 1452, 758, 698; Anal. Calcd. for polymer:
C, 90.69; H, 7.81; N, 0.70, found C, 89.74; H, 8.05; N, 0.67, loading = 0.48
mmolg-1; N2 BET adsorption < 10
m2g-1; resin swelled
to 5.2 times its own volume in CH2Cl2.
A
significant proportion of the polymeric product was found to contain
larger colourless beads mixed with plastic residue which were retained
in the 500 micron mesh sieve (4.34 g, 30%), IR (KBr disc)/cm-1 3446,
3025, 2918, 1601, 1493, 1452, 758, 699; Anal. Calcd. for polymer:
C, 90.69; H, 7.81; N, 0.70, found C, 89.89; H, 8.08; N, 0.70, loading = 0.50 mmolg-1;
N2 BET adsorption < 10 m2g-1;
resin swelled to 4.7 times its own volume in CH2Cl2.