Subscribe to RSS
DOI: 10.1055/s-2003-39905
Highly Diastereoselective Synthesis of 3-Indolyl-N-Substituted Glycine Derivatives via TFA-Promoted Friedel-Crafts Type Reaction of Indoles with Chiral Cyclic Glyoxylate Imine
Publication History
Publication Date:
11 June 2003 (online)
Abstract
A method based on the highly diastereoselective Friedel-Crafts type reaction of indoles with chiral cyclic glyoxylate imines in the presence of TFA toward the stereoselective synthesis of 3-indolyl-N-substituted glycine derivatives is presented. The absolute configuration of the newly formed chiral center was determined by a single-crystal X-ray analysis.
Key words
Friedel-Crafts reaction - Brönsted acid - chiral cyclic glyoxylate imines - optically active indolyglycines
-
1a
Najera C. Synlett 2002, 9: 1388 -
1b
Williams RM.Hendrix JA. Chem. Rev. 1992, 92: 889 -
1c
Williams RM. Aldrichimica Acta 1992, 11 -
1d
Duthaler RO. Tetrahedron 1994, 50: 1539 -
1e
Shen TY. inventors; US Patent, 3316260. -
1f
Blaszczak LC, andTurner JR. inventors; EP 122157. -
1g
Clark BP.Harris JR. Synth. Commun. 1997, 27: 4223 -
2a
Kawasaki T.Ohno K.Enoki H.Umemoto Y.Sakamoto M. Tetrahedron Lett. 2002, 43: 4245 -
2b
Kawasaki T.Enoki H.Matsumura K.Ohyama M.Inagawa M.Sakamoto M. Org. Lett. 2000, 2: 3027 -
2c
Yang CG.Wang J.Tang XX.Jiang B. Tetrahedron: Asymmetry 2002, 13: 383 -
3a
Humber LG.Ferdinandi E.Demerson CA.Ahmed S.Shah U.Mobilio D.Sabatucci J.De Lange B.Labbadia F.Hughes P.DeVigilio J.Neuman G.Chau TT.Weichman BM. J. Med. Chem. 1988, 31: 1712 -
3b
Katz AH.Demerson CA.Shaw CC.Asselin AA.Humber LG.Conway KM.Gavin G.Guinosso C.Jensen NP.Mobilio D.Noureldin R.Schmid J.Shah U.Van Engen D.Chau TT.Weichman BM. J. Med. Chem. 1988, 31: 1244 - 4
Blaszczak LC, andTurner JP. inventors; US Patent, 4492694. -
5a
Sakai N.Hirasawa M.Hamajima T.Konakahara T. J. Org. Chem. 2003, 68: 483 -
5b
Sakai N.Hamajima T.Konakahara . Tetrahedron Lett. 2002, 43: 4821 -
5c
Janczuk A.Zhang W.Xie WH.Lou SZ.Cheng JP.Wang PG. Tetrahedron Lett. 2002, 43: 4271 -
5d
Wynne JH.Stalick WM. J. Org. Chem. 2002, 67: 5850 -
5e
Hao J.Taktak S.Aikawa K.Yusa Y.Hatano M.Mikami K. Synlett 2001, 1443 -
5f
Xie WH.Bloomfield KM.Jin YF.Dolney NY.Wang PG. Synlett 1999, 498 -
6a
Jiang B.Yang CG.Gu XH. Tetrahedron Lett. 2001, 42: 2545 ; and references cited therein -
6b
Corey EJ.Gorgan MJ. Org. Lett. 1999, 1: 157 -
6c
Ishitani H.Komiyama S.Kobayashi S. Angew. Chem. Int. Ed. 1998, 37: 3186 -
6d
Iyer MS.Gigstad KM.Namdev ND.Lipton M. J. Am. Chem. Soc. 1996, 118: 4910 - 7
Johannsen M. Chem. Commun. 1999, 2233 -
8a
Ferraris D.Young B.Dudding T.Drury WJ.Lectka T. Tetrahedron 1999, 55: 8869 -
8b
Ferraris D.Dudding T.Young B.William JD.Lectka T. J. Org. Chem. 1999, 64: 2168 -
9a
Petasis NA.Goodman A.Zavialov IA. Tetrahedron 1997, 48: 16463 -
9b
Petasis NA.Zavialov IA. J. Am. Chem. Soc. 1997, 119: 445 -
9c
Petasis NA.Boral S. Tetrahedron Lett. 2001, 42: 539 -
10a
Olah GA. Friedel-Crafts and Related Reactions Vol. III: Interscience; New York: 1964. Part 1. -
10b
Heaney H. In Comprehensive Organic SynthesisTrost BM. Pergamon Press; New York: 1991. -
11a
Ueda M.Miyabe H.Teramachi M.Miyata O.Naito T. Chem. Commun. 2003, 426 -
11b
Bertrand MP.Coantic S.Feray L.Nouguier R.Perfetti P. Tetrahedron 2000, 56: 3951 -
11c
Bertrand MP.Feray L.Nouguier R.Stella L. Synlett 1998, 780 -
11d
Harwood LM.Tyler SNG.Anslow AS.MacGilp ID.Drew MGB. Tetrahedron: Asymmetry 1997, 8: 4007 -
11e
Harwood LM.Vines KJ.Drew MGB. Synlett 1996, 1051 -
12a
Tohma S.Endo A.Kan T.Fukuyama T. Synlett 2001, 1179 -
12b
Endo A.Yanagisawa A.Abe M.Tohma S.Kan T.Fukuyama T. J. Am. Chem. Soc. 2002, 124: 6552 -
12c
Endo A.Kan T.Fukuyama T. Synlett 1999, 1103 -
13a
Snyder HR.Matteson DS. J. Am. Chem. Soc. 1957, 79: 2217 -
13b
Van Tamelen EE.Knapp GC. J. Am. Chem. Soc. 1955, 77: 1860 -
14a
Ottoni O.de V. F. Neder A.Dias AKB.Cruz RP.Aquino LB. Org. Lett. 2001, 3: 1005 -
14b
Okauchi T.Itonaga M.Minami T.Owa T.Kitoh K.Yoshino H. Org. Lett. 2000, 2: 1485 -
15a
Chen YJ.Ge CS.Wang D. Synlett 2000, 1429 -
15b
Ge CS.Zhang J.Chen YJ.Wang D. Acta Chimica Sinica 2001, 59: 1835 -
15c
Ge CS.Chen YJ.Wang D. Synlett 2002, 37 - 16
Shafer CM.Molinski TF. J. Org. Chem. 1996, 61: 2044 - 17
Meyers AI.Knaus G.Kamata K.Ford ME. J. Am. Chem. Soc. 1976, 98: 567 - 21
Ishii H.Murakami K.Sakurada E.Hosoya K.Murakami Y. J. Chem. Soc., Perkin Trans. 1 1988, 2377 - Several methods have existed for the removal of the chiral template from the similar compounds without notable racemization:
-
22a
Aldous DJ.Drew MGB.Hamelin EM.-N.Harwood LM.Jahana AB.Thurairatnam S. Synlett 2001, 1836 -
22b
Cox GG.Harwood LM. Tetrahedron: Asymmetry 1994, 5: 1669 -
22c
Harwood LM.Macro J.Watkin D.Williams E.Wong LF. Tetrahedron: Asymmetry 1992, 3: 1127 ; and also refs. -
22d
Although we did not study this issue systematically, the preliminary result showed that when 3bc was subjected to the hydrogenolysis in aqueous methanol using Pearlman’s catalyst [Pd(OH)2/C] and TFA under 1 atmosphere of hydrogen gas for 5 h, the corresponding optically active amino acid was obtained in 82% yield, [α]D 20 +57 (c 0.35, CH3OH).
References
Representative experimental procedure:
To a solution of indole (1.2 equiv) and chiral cyclic glyoxylate
imine (1.0 equiv) in CH2Cl2 at 0 °C,
TFA (5 equiv) was added dropwise by syringe. After the reaction
mixture was stirred for 3 h at 0 °C, usual work-up furnished
a residue from which the pure product was obtained after purification
with flash chromatography on silica gel [all new compounds
were subjected to 1H NMR, 13C
NMR, IR, MS(FAB) analysis]. The diastereoselectivity was
determined by 1H NMR and 13C NMR
spectra. All compounds gave satisfactory spectral data. Selected
data for compound 3c*: mp: 234-236 °C, [α]D
20 +148.57
(c 0.7, acetone); FTIR (KBr) 3338, 1734, 1693,
1538, 1454, 1377, 1343, 1319, 1256, 1217, 1190, 1086, 1014 cm-1; 1H
NMR(300 Hz, CDCl3): δ 1.38 (t, J = 7 Hz
3 H), 2.54 (br s, 1 H), 4.43 (m, 2 H), 4.90 (d, J = 4
Hz,
1 H), 5.90 (s, 1 H), 6.14 (d, J = 4
Hz, 1 H), 7.11-7.29 (m, 12 H), 7.39-7.45 (m, 2
H), 7.79 (d, J = 8 Hz, 1 H),
8.96 (br s,
1 H); 13C NMR(75
Hz, CDCl3) δ 14.5, 52.8, 58.3, 61.6, 85.4, 113.4,
121.4, 121.8, 125.7, 126.0, 127.6, 128.2, 128.4, 128.6, 128.9, 129.3,
137.2, 138.0, 138.5, 162.3, 169.3; HRMS (FAB): m/z 441.1811
for [MH+] C27H25N2O4 requires
441.1808.
X-Ray analysis of 2c: The crystal used for the X-ray study had the dimensions 0.29 × 0.17 × 0.08 mm. Crystal data: C16H13NO2, M 251.27; orthorhombic; space group, P21; lattice parameters, a = 5.9439 Å, b = 8.4943 Å, c = 25.5719 Å; V = 1291.11 Å3, Z = 4; D calcd = 1.293 g/cm3; F 0 = 528; number of reflections measured = 2737, l = 0.7107 Å.
20X-Ray analysis of 3hc: The crystal used for the X-ray study had the dimensions 0.53 × 0.09 × 0.04 mm. Crystal data: C24H19BrN2O2, M 447.32; Monoclinic; space group, C2; lattice parameters, a = 26.817 Å, b = 7.9070 Å, c = 9.8754 Å; V = 2083.1 Å3, Z = 4; D calcd = 1.426 g/cm3; F 0 = 912; number of reflections measured = 4268, l = 0.7107 Å.