Subscribe to RSS
DOI: 10.1055/s-2003-39907
Facile Removal Strategy for Allyl and Allyloxycarbonyl Protecting Groups Using Solid-Supported Barbituric Acid under Palladium Catalysis
Publication History
Publication Date:
11 June 2003 (online)
Abstract
Solid-supported barbituric acid can be used for the palladium(0)-catalyzed deprotection of allyl amines, carbamates, carbonates, esters and ethers. This solid-supported reagent facilitates isolation and purification of the deprotected compounds, especially acids and amines.
Key words
allyl and allyloxycarbonyl groups - palladium(0)-catalyzed deprotection - solid-supported barbituric acid - facile isolation - highly polar compounds
- 1
Greene TW.Wuts PGM. Protecting Groups in Organic Synthesis 3rd ed.: Wiley; New York: 1999. - Recent reviews on solid-supported reagents, see:
-
2a
Bhalay G.Dunstan A.Glen A. Synlett 2000, 1846 -
2b
Ley SV.Baxendle IR.Bream RN.Jackson PS.Leach AG.Longbottom DA.Nesi M.Scott JS.Storer RI.Taylor SJ. J. Chem. Soc., Perkin Trans. 1 2000, 3815 -
2c
Kirshning A.Monenschein H.Wittenberg R. Angew. Chem. Int. Ed. 2001, 40: 650 - 3
Tsukamoto H.Kondo Y. Synlett 2003, 1061 -
4a
Garro-Helion F.Merzouk A.Guibé F. J. Org. Chem. 1993, 58: 6109 -
4b
Kunz H.März J. Angew. Chem., Int. Ed. Engl. 1988, 27: 1375 -
4c
Kunz H.März J. Synlett 1992, 591 - 6
Clark-Lewis JW.Thompson MJ. J. Chem. Soc. 1959, 1628 - 7
Neville GA.Avdovich HW.By AW. Can. J. Chem. 1970, 48: 2274 - 8 The synthesis of 1a according
to the following report on solution-phase synthesis of barbituric
acids was also unsuccessful:
Yogo M.Hirota K.Senda S. Chem. Pharm. Bull. 1982, 30: 1333 - 9
- 10
Bose AK.Garratt S. Tetrahedron 1963, 19: 85 - 11
- 12 Carbonate 9 was
prepared according to the following report:
Lehmann J.Lloyd-Jones GC. Tetrahedron 1995, 51: 8863 - 14
Högber T.Rämsby S.Ström P. Acta Chem. Scand. 1989, 43: 660
References
A mixture of 4a (5.01 g, 7.21 mmol), dry CH2Cl2 (30 mL) and propyl isocyanate (2.7 mL, 28.8 mmol) was agitated at 30 °C for 24 h on an orbit shaker. The resin was filtered and washed with DMF (4 × 40 mL), CHCl3 (4 × 40 mL), MeOH (4 × 40 mL) and Et2O (1 × 40 mL) to give 5a. A solution of DCC (8.91 g, 43.2 mmol) in dry THF (12 mL) was added dropwise to a stirred mixture of 5a, malonic acid (2.25 g, 21.6 mmol) and dry THF (36 mL) at 0 °C under Ar. When addition was complete, the mixture was stirred for additional 3 h at r.t. Then, the mixture was diluted with MeOH (100 mL) and heated at 60 °C to dissolve by-products. The resin was collected by filtration and washed with hot DMF (4 × 40 mL), CHCl3 (4 × 40 mL), MeOH (4 × 40 mL) and Et2O (1 × 40 mL) to give 1a (6.24 g, quant.).
13Spectra data of 7: 1H NMR (300 MHz, CDCl3): δ = 5.70 (br s, 2 H), 4.57 (s, 2 H), 3.84 (t, 2 H, J = 7.7 Hz), 3.75 (s, 2 H), 1.63 (tq, 2 H, J = 7.7, 7.4 Hz), 0.94 (t, 3 H, J = 7.4 Hz). 13C NMR (75.4 MHz, CDCl3): δ = 168.2, 164.8, 164.5, 151.5, 43.7, 43.2, 39.4, 21.1, 11.0. IR(neat): νmax = 3348, 3199, 2966, 2935, 1659, 1410, 1362, 1289, 1204, 1177, 1140, 1086, 936, 758 cm-1. MS (EI): m/z (relative intensity) = 227 (5.6) [M]+ , 210 (6.5), 184 (96), 169 (37), 143 (77), 98 (81), 56 (100). HRMS (EI) calcd for C9H13N3O4 [M]+ 227.0906. Found: 227.0910. Spectra data of 8: 1H NMR (300 MHz, CDCl3): δ = 7.27-7.23 (m, 8 H), 6.41 (d, 2 H, J = 15.7 Hz), 6.11 (dt, 2 H, J = 15.7, 7.7 Hz), 5.93-5.61 (m, 2 H), 4.55 (s, 2 H), 3.75 (t, 2 H, J = 7.7 Hz), 3.00-2.87 (m, 4 H), 1.41 (tq, 2 H, J = 7.7, 7.4 Hz), 0.73 (t, 3 H, J = 7.4 Hz). 13C NMR (75.4 MHz, CDCl3): δ = 171.0, 170.5, 168.3, 150.4, 135.1, 134.3, 133.5, 128.8, 127.7, 122.7, 57.2, 43.6, 43.4, 42.5, 21.1, 10.9. IR (neat): νmax = 3466, 3363, 2966, 2935, 1675, 1490, 1424, 1405, 1283, 1092, 971, 756 cm-1. MS (EI): m/z (relative intensity) = 527 (32) [M]+, 510 (42), 385 (42), 376 (36), 359 (87), 331 (52), 287 (26), 246 (72), 240 (72), 223 (53), 151 (100), 116 (53), 115 (52). HRMS (EI) calcd for C27H27Cl2N3O4 [M]+ 527.1379. Found: 527.1401.