RSS-Feed abonnieren
DOI: 10.1055/s-2003-39909
Diene RCM in the Presence of a Protected Alkyne
Publikationsverlauf
Publikationsdatum:
11. Juni 2003 (online)
Abstract
Diene RCM reactions with Grubbs catalyst proceed in the presence of a terminal alkyne protected by TMS or dicobalt hexacarbonyl complex, and this reaction was used to synthesize a key intermediate for nakadomarin A (2).
Key words
nakadomarin A - ring-crosing olefin metathesis (RCM) - enyne metathesis - Grubbs catalyst - dicobalt hexacarbonyl complex
- For recent reviews on metathesis, see:
-
1a
Armstrong SK. J. Chem. Soc., Perkin Trans. 1 1998, 371 -
1b
Fürstner A. Angew. Chem. Int. Ed. 2000, 39: 3013 -
1c
Trnka TM.Grubbs RH. Acc. Chem. Res. 2001, 34: 18 - For recent reviews on enyne metathesis with ruthenium carbene complexes, see:
-
2a
Poulsen CS.Madsen R. Synthesis 2003, 1: 1 -
2b For examples with other
transition metals, see:
Katz TJ.Sivavec TM. J. Am. Chem. Soc. 1985, 107: 737 -
2c
Trost BM.Tanoury GJ. J. Am. Chem. Soc. 1988, 110: 1636 -
2d
Barrett AGM.Baugh SPD.Braddock DC.Flack K.Gibson VC.Giles MR.Marshall EL.Procopiou PA.White AJP.Williams DJ. J. Org. Chem. 1998, 63: 7893 -
2e See also:
Trost BM.Doherty GA. J. Am. Chem. Soc. 2000, 122: 3801 -
2f
Fürstner A.Szillat H.Stelzer F. J. Am. Chem. Soc. 2000, 122: 6785 -
2g See also:
Fürstner A.Stelzer F.Szillat H. J. Am. Chem. Soc. 2001, 123: 11863 -
2h
Chatani N.Inoue H.Morimoto T.Muto T.Murai S. J. Org. Chem. 2001, 66: 4433 -
3a
Kitamura T.Sato Y.Mori M. Adv. Synth. Catal. 2002, 344: 678 -
3b
Kinoshita A.Sakakibara N.Mori M. Tetrahedron 1999, 55: 8155 -
4a For
an example of diene ring-closing metathesis with a tungsten catalyst
in the presence of an alkyne, see:
Kim S.-H.Zuercher WJ.Bowden NB.Grubbs RH. J. Org. Chem. 1996, 61: 1073 -
4b For an example of olefin
cross metathesis with Grubbs catalyst in the presence of an alkyne, see:
Ratnayake AS.Hemscheidt T. Org. Lett. 2002, 4: 4667 - 5 Synthesis of medium-rings by diene
metathesis using substrates having an inner dicobalt hexacarbonyl
complex using Grubbs first generation catalyst or molybdenum carbene
catalyst has been reported very recently:
Young DGJ.Burlison JA.Peters U. J. Org. Chem. 2003, 68: 3494 - 6
Kobayashi J.Watanabe D.Kawasaki N.Tsuda M. J. Org. Chem. 1997, 62: 9236 - 8
Scholl M.Ding S.Lee CW.Grubbs RH. Org. Lett. 1999, 1: 953 - 9 Under the forced conditions using
15 mol% of the catalyst, 3e gave 4e in 64% yield, and isomerization
of vinylsilane to Z:E = 3:2
was observed. For an example of isomerization of olefin with second-generation
Grubbs catalyst B, see:
Lee CW.Grubbs RH. Org. Lett. 2000, 2: 2145 -
10a For
a recent example of decomplexation into an alkyne, see:
Jones GB.Wright JM.Rush TM.Plourde GWII.Kelton TF.Mathews JE.Huber RS.Davidson JP. J. Org. Chem. 1997, 62: 9379 -
10b For an example of reductive
decomplexation into an alkene, see:
Takai S.Ploypradith P.Hamajima A.Kira K.Isobe M. Synlett 2002, 588
References
Nagata, T.; Nakagawa, M.; Nishida, A. J. Am. Chem. Soc. 2003, 125, in press.
11A Typical Experimental Procedure for the Metathesis Reaction of 3c: Grubbs catalyst B (1.2 mg, 5 mol%) was added to a solution of 3c (20.4 mg, 28.7 mmol, Table [1] , entry 5) in CH2Cl2 29 mL (1 mmol) which was not degassed under a dry argon atmosphere. The resulting solution was placed in a 50 °C oil bath. After 1.5 h, the starting material 3c was completely converted to the cyclized product 4c on TLC. The solution was concentrated under reduced pressure and purified by flash chromatography on silica gel to give 4c (18.8 mg, 98%) as a red oil.
12Spectral data for 4c and 7b. 2-(1-Phenylsulfonylamino-5-hexynyl)-5,10-dioxa-5,6,9,10-tetrahydrobenzocyclooctene-dicobalt
hexacarbonyl complex (4c): IR (KBr): n = 3067, 2929,
2521, 2090, 2048, 2021, 1577, 1497, 1446, 1350, 1300, 1267, 1168,
1116, 1020, 999, 838, 739, 723 cm-1.
1H
NMR (400 MHz, CDCl3): d = 1.55-1.68
(m, 4 H), 2.82 (t, J = 7.2
Hz, 2 H), 3.50 (t, J = 6.7
Hz, 2 H), 4.81 (d, J = 4.9 Hz,
2 H), 4.92 (d, J = 4.4
Hz, 2 H), 5.88 (dt, J = 11.0,
4.4 Hz, 1 H), 5.91 (dt, J = 11.0, 4.9 Hz, 1 H),
5.95 (s, 1 H), 6.59 (d, J = 2.7
Hz, 1 H), 6.68 (dd, J = 2.7,
8.5 Hz, 1 H), 6.87 (d, J = 8.5
Hz, 1 H), 7.46 (dd, J = 7.8,
7.8 Hz, 2 H), 7.57 (t, J = 7.8
Hz, 1 H), 7.60 (d, J = 7.8
Hz, 2 H). 13C NMR (100 MHz, CDCl3): d = 27.9,
28.4, 33.6, 50.3, 69.7, 70.7, 73.1, 96.6, 122.5, 122.9, 124.5, 127.7
(2 C), 128.7 (2 C), 128.9, 129.7, 132.6, 133.9, 138.1, 147.9, 148.0,
199.9 (6 C). LRMS (FAB): m/z = 684 [M + H]+.
HRMS (FAB): Calcd for C28H24Co2NO10S [M + H]+ 683.9785.
Found: 683.9781. (6aS,7aS,11aS,14bS)-13-(3-Butynyl)-9-(phenylsulfonyl)-3,4,6a,7,8,9,10,11,11a,14b-decahydrofuro[2¢¢3 ¢¢:3¢,4¢]pyri-do[3¢¢,4¢¢:1¢,5¢]cyclopenta[1¢,2¢:4,5]pyrrolo[1,2-a]azocin-1(2H)-one-dicobalt
hexacarbonyl complex (7b): [a]23
D -38.8
(c 0.10, CHCl3). IR (neat): n = 3063,
2927, 2856, 2091, 2049, 2015, 1651, 1462, 1409, 1543, 1268, 1199,
1161, 1092, 981, 740, 691 cm-1 1H
NMR (600 MHz, CDCl3): d = 1.43-1.52
(m, 1 H), 1.69-1.77 (m, 1 H), 1.99-2.09 (m, 4
H), 2.22-2.30 (m, 1 H), 2.33-2.37 (m, 2 H), 2.58-2.65
(m, 2 H), 2.92 (t, J = 7.4
Hz, 2 H), 2.98-3.01 (m, 1 H), 3.01 (d, J = 12.7
Hz, 1 H), 3.15-3.26 (m, 2 H), 3.29-3.33 (m, 1
H), 3.51 (d, J = 12.7
Hz, 1 H), 4.55-4.58 (m, 1 H), 5.09 (s, 1 H), 5.46 (d, J = 12.1 Hz,
1 H), 5.73-5.79 (m, 1 H), 5.90 (s, 1 H), 5.97 (s, 1 H),
7.52 (dd, J = 7.7,
8.1 Hz, 2 H), 7.60 (t, J = 7.7 Hz,
1 H), 7.75 (d, J = 8.1
Hz, 2 H). 13C NMR (150 MHz, CDCl3): d = 29.1,
30.9, 32.50, 32.55, 39.0, 43.08, 43.13, 49.7, 56.8, 59.7, 63.0,
73.4, 95.5, 103.4 (2 C), 127.4, 129.1 (2 C), 129.3 (2 C), 132.7,
133.8, 137.4, 155.5, 159.8, 173.3, 199.7 (6 C). LRMS (FAB): m/z = 777 [M + H]+.
HRMS (FAB): Calcd for C34H31Co2N2O10S [M + H]+ 777.0339. Found:
777.0363.