Subscribe to RSS
DOI: 10.1055/s-2003-40325
Diels-Alder Reaction of 2-Nitro Glycals: A New Route to the Synthesis of Benzopyrans
Publication History
Publication Date:
30 June 2003 (online)
Abstract
Synthesis of different benzopyrans was achieved by Diels-Alder reaction of 2-nitro glycals with Danishefky’s diene, hydrolysis of the enol ether moiety, and subsequent elimination of the nitro and methoxy group.
Key words
2-nitro glycals - Diels-Alder reaction - chromans - benzopyrans - benzannulated dihydropyrans - C-glycosides
-
1a
Rastrelli L.Berger I.Kubelka W.Caceres A.De Tommasi N.De Simone F. J. Nat. Prod. 1999, 62: 188 -
1b
Ahmad-Junan SA.Amos PC.Whiting DA. J. Chem. Soc., Perkin Trans. 1 1992, 539 -
1c
Lami N.Kadota S.Tezuka Y.Kilkuchi T. Chem Pharm. Bull. 1990, 38: 1558 -
1d
Petkov E.Uzunov P.Kostova I.Somleva T.Ognyanov I. Planta Med. 1983, 47: 237 -
1e
Jennings RC.Ottridge AP. J. Chem. Soc., Perkin Trans 1 1984, 1733 -
2a
Pratt GE.Jennings RC.Hamnett AF.Brooks GT. Nature (London) 1980, 284: 320 -
2b
Jennings RC. Tetrahedron Lett. 1982, 23: 2693 -
2c
Pranab M.Asok N.Venkateswaran RV. Tetrahedron 1996, 52: 10265 -
2d
David M.Sauleau J.Sauleau A. Bull. Soc. Chim. Fr. 1993, 130: 527 -
3a
Bohm BA. Introduction to Flavonoids Harwood Academic publishers; Amsterdam: 1998. -
3b
The Flavonoids
Harborne JB.Mabry H. Chapman & Hall; New York: 1988. -
4a
Yang J.Fan S.Pei H.Zhu B.Xu W.Naganawa H.Hamada M.Takeuchi T. J. Antibiot. 1991, 44: 1277 -
4b
Suetsuna K.Osajima Y. Agric. Biol. Chem. 1989, 53: 241 - 5
Hanessian S. Deoxy Sugars American Chemical Society; Washington DC.: 1968. - 6
Burnouf C.Lopez JC.Calvo-Flores FG.De los Angeles Laborde M.Olesker A.Lukacs G. J. Chem. Soc., Chem. Commun. 1990, 823 -
7a
Dötz KH.Ehlenz R.Paetsch D. Angew. Chem. Int. Ed. Engl. 1997, 36: 2376 -
7b
Hallett MR.Painter JE.Ricketts D. Tetrahedron Lett. 1998, 39: 2851 -
8a
Das J.Schmidt RR. Eur. J. Org. Chem. 1998, 1609 -
8b
Winterfeld GA.Ito Y.Ogawa T.Schmidt RR. Eur. J. Org. Chem. 1999, 1167 -
8c
Winterfeld GA.Khodair AI.Schmidt RR. Eur. J. Org. Chem. 2003, 1009 -
8d
Khodair, A. I.; Schmidt, R. R. Eur. J. Org. Chem., in print.
-
8e
Pachamuthu K.Gupta A.Das J.Schmidt RR.Vankar YD. Eur. J. Org. Chem. 2002, 1479 -
8f
Winterfeld GA.Das J.Schmidt RR. Eur. J. Org. Chem. 2000, 3047 -
9a
Lemieux RU.Nagabushan TL.O’Neill IK. Tetrahedron Lett. 1964, 5: 1909 -
9b
Lemieux RU.Nagabushan TL.O’Neill IK. Can. J. Chem. 1968, 46: 413 - 10
Kraus GA.Thurston J.Thomas PJ. Tetrahedron Lett. 1988, 29: 1879 - 11
Corey EJ.Estreicher H. Tetrahedron Lett. 1981, 22: 603 - 13
Dufner G. Ph.D. Dissertation Universität Konstanz; Germany: 1997. - 14
Iida H.Tamazaki N.Kibayashi C. J. Org. Chem. 1987, 52: 1956 - 15
Sunazuka T.Tabata N.Nagamitsu T.Tomoda H.Omura S. Tetrahedron Lett. 1993, 34: 6659
References
General experimental procedure for 6, 9, 10 and 12: A solution
of 2-nitro glycal (1 mmol) and Danishefky’s diene (1.1
mmol) in dry toluene (2 mL) was refluxed under argon for 36 h. The
reaction mixture was allowed to cool and the toluene was removed
under reduced pressure. Then a mixture of THF-10% H2SO4 in
H2O (2:1) was added and stirred at room temperature for
30 min. The product was isolated by extractive workup followed by
filtration by column chromatography. The hydrolyzed product was dissolved
in 1 M NaOCH3 in methanol (2
mL) and heated at 50 °C for 1.5 h. Methanol was evaporated
followed by neutralization with saturated aq NH4Cl solution
and extracted with ethyl acetate. The organic layer was washed with
water, brine and dried over anhydrous MgSO4. Evaporation
of the solvent yielded the benzannulated pyrans.
For compound 5: A mixture of hydrolyzed products 3 and 4 and DBN
(3 equiv) in toluene (2 mL) was refluxed for 24 h. The reaction
mixture was neutralized with aq NH4Cl after removal of
the toluene followed by extraction with ethyl acetate. The organic
layer was washed with dilute HCl, water, brine and dried over anhydrous
MgSO4. Evaporation of the solvent and purification by
column chromatography yielded the product 5 in
68% yield.
Some selected data:
5: [α]D
20 = -39.1
(c 1, CHCl3); 1H NMR (250 MHz): δ 2.86 (br
s, 1 H), 3.45-3.55 (m, 2 H), 3.59 (dd, J = 1.99,
7.82 Hz, 1 H), 3.93 (d, J = 10.8
Hz, 1 H), 4.09 (d, J = 10.8
Hz, 1 H), 4.19 (br s, 1 H), 4.25 (d, J = 11.46
Hz, 1 H), 4.44 (d, J = 11.46 Hz,
1 H), 4.43-4.54 (m, 3 H), 5.37 (br s, 1 H), 6.81-6.85
(m, 2 H), 6.93-6.97 (m, 2 H), 7.18-7.35 (m, 15
H). 13C NMR (62.9 MHz): δ 69.7,
70.4, 71.2, 73.3, 73.9, 80.3, 81.1, 115.4, 127.6, 127.7, 127.9,
128.2, 128.3, 129.1, 130.5, 137.5, 137.8, 156.1. MALDI: m/z 507 (M + Na+).
Calcd: C, 76.80; H, 6.66. Found: C, 76.55; H, 6.39.
6: [α]D
20 = +6.3
(c 1, CHCl3); 1H NMR (250 MHz): δ 3.71-3.83
(m, 2 H), 4.14 (dd, J = 2.2
Hz, 3.2 Hz, 1 H), 4.34 (td,
J = 1.4
Hz, 5.9 Hz, 1 H), 4.44 (d, J= 11.9
Hz, 1 H), 4.53 (d, J = 11.9
Hz, 1 H), 4.57-4.86 (m, 5 H), 5.14 (br s, 1 H), 6.29 (d, J = 2.4 Hz, 1 H), 6.39 (dd, J = 2.5 Hz, 8.3 Hz, 1 H), 7.20-7.40
(m, 16 H). 13C NMR (62.9 MHz): δ 69.1,
70.1, 71.8, 73.1, 73.5, 74.0, 75.8, 103.1, 108.6, 114.0, 127.7,
127.8, 128.1, 128.3, 128.4, 129.3, 137.7, 138.1, 153.9, 156.7. MALDI: m/z 505 (M + Na+).
Calcd: C, 77.16; H, 6.27. Found: C, 76.82; H, 6.57.
9: [α]D
20 = +26.7
(c 1, CHCl3); 1H NMR (250 MHz): δ 3.7-3.89
(m, 2 H), 4.04 (t, J = 6.1 Hz,
1 H), 4.29-4.35 (m, 1 H), 4.58-4.80 (m, 7 H),
5.4 (br s, 1 H), 6.34 (d, J = 2.43
Hz, 1 H), 6.4 (dd, J = 2.44
Hz, 8.34 Hz, 1 H), 7.1 (d, J = 8.38
Hz, 1 H), 7.23-7.37 (m, 15 H). 13C
NMR (62.9 MHz): δ 69.0, 71.2, 73.1, 73.5, 73.6, 76.1, 77.01,
103.3, 109, 113.9, 127.7, 127.9, 128.0, 128.5, 130.2, 137.8, 138.2,
154.6, 156.7. MALDI: m/z 505(M + Na+).
10: [α]D
20 = +30.1
(c 1, CHCl3); 1H NMR (250 MHz): δ 3.53-3.92
(m, 6 H), 4.35-4.92(m, 17 H), 5.18 (br s, 1 H), 5.34 (d, J = 3.6 Hz, 1 H), 6.37 (d, J = 2.18 Hz, 1 H), 6.42 (dd, J = 2.32 Hz, 8.24 Hz, 1 H),
7.12 (dd, J = 3.26 Hz, 7.06
Hz, 1 H), 7.24-7.30 (m, 30 H). 13C
NMR (62.9 MHz): δ 68.4, 69.0, 69.4, 70.9, 72.9, 73.3, 73.4,
74.5, 75.0, 75.5, 76.9, 80.0, 81.7, 96.1, 103.7, 109.1, 112.7, 127.6,
127.7, 127.8, 127.9, 128.3, 128.4, 131.1, 137.9, 138.0, 138.1, 138.3,
138.8, 154.9, 156.9. MALDI: m/z 937
(M + Na+).
12: [α]D
20 = -27.1
(c 1, CHCl3); 1H NMR (250 MHz): δ 1.46 (d, J = 6.48 Hz, 3 H), 3.69 (dd, J = 6.83 Hz, 8.08 Hz, 1 H), 4.11-4.19
(m, 1 H), 4.65-4.88 (m, 6 H), 6.27 (d, J = 2.48
Hz, 1 H), 6.40 (dd, J = 2.51
Hz, 8.39 Hz, 1 H), 7.15 (dd, J = 0.64 Hz,
8.41 Hz, 1 H), 7.23-7.36 (m, 10 H). 13C
NMR (62.9 MHz): δ 17.9, 71.5, 73.7, 74.4, 77.3, 79.1, 102.9,
109.0, 114.7, 127.7, 127.87, 127.89, 127.9, 128.5, 129.8, 137.8, 138.2,
155.0, 156.5. Cald: C, 76.57; H, 6.43. Found: C, 76.25; H, 6.32.
15: [α]D
20 = +53.6
(c 0.5, CHCl3); 1H NMR (600 MHz): δ 2.02,
2.12 (2 s, 6 H), 2.25-2.33 (m, 1 H), 2.4-2.5 (m,
1 H), 2.9 (t, J = 6.7 Hz, 1
H), 3.77 (s, 3 H), 4.2-4.35 (m, 3 H), 5.08-5.17
(m, 3 H), 5.8-5.9 (m, 1 H), 6.46 (d, J = 1
Hz, 1 H), 6.53 (dd, J = 2.5
Hz, 8.4 Hz, 1 H), 6.98 (d, J = 8.5
Hz, 1 H). 13C NMR (150.8 MHz): δ 20.8,
21.0, 38.4, 41.5, 55.3, 63.3, 68.0, 69.9, 101.2, 108.5, 118.0, 130.5,
134.8, 153.5, 159.4, 170.4, 170.7. Calcd: C, 64.66; H, 6.63. Found:
C, 64.95; H, 7.0.
17: [α]D
20 = +29.6
(c 1, CHCl3); 1H NMR (250 MHz): δ 1.98, 2.0,
2.1 (3 s, 9H), 2.77 (d, J = 6.9
Hz, 2 H), 3.75 (s, 3 H), 4.07 (dd, J = 6.8
Hz, 11.8 Hz, 1 H), 4.23 (dd, J = 4.6
Hz, 11.8 Hz, 1 H), 5.13-5.26 (m, 2 H), 6.92-7.2
(m, 4 H). 13C NMR (62.9 MHz): δ 20.6,
20.7, 21.0, 36.2, 62.2, 70.6, 72.0, 121.6, 130.2, 133.6, 149.6,
169.3, 170.0, 170.4.