Synlett 2003(9): 1355-1357
DOI: 10.1055/s-2003-40325
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Diels-Alder Reaction of 2-Nitro Glycals: A New Route to the Synthesis of Benzopyrans

Kandasamy Pachamuthu, Richard R. Schmidt*
Department of Chemistry, University of Konstanz, Fach M 725, 78457 Konstanz, Germany
e-Mail: Richard.Schmidt@uni-konstanz.de;
Further Information

Publication History

Received 4 February 2003
Publication Date:
30 June 2003 (online)

Abstract

Synthesis of different benzopyrans was achieved by Diels-Alder reaction of 2-nitro glycals with Danishefky’s diene, hydrolysis of the enol ether moiety, and subsequent elimination of the nitro and methoxy group.

    References

  • 1a Rastrelli L. Berger I. Kubelka W. Caceres A. De Tommasi N. De Simone F. J. Nat. Prod.  1999,  62:  188 
  • 1b Ahmad-Junan SA. Amos PC. Whiting DA. J. Chem. Soc., Perkin Trans. 1  1992,  539 
  • 1c Lami N. Kadota S. Tezuka Y. Kilkuchi T. Chem Pharm. Bull.  1990,  38:  1558 
  • 1d Petkov E. Uzunov P. Kostova I. Somleva T. Ognyanov I. Planta Med.  1983,  47:  237 
  • 1e Jennings RC. Ottridge AP. J. Chem. Soc., Perkin Trans 1  1984,  1733 
  • 2a Pratt GE. Jennings RC. Hamnett AF. Brooks GT. Nature (London)  1980,  284:  320 
  • 2b Jennings RC. Tetrahedron Lett.  1982,  23:  2693 
  • 2c Pranab M. Asok N. Venkateswaran RV. Tetrahedron  1996,  52:  10265 
  • 2d David M. Sauleau J. Sauleau A. Bull. Soc. Chim. Fr.  1993,  130:  527 
  • 3a Bohm BA. Introduction to Flavonoids   Harwood Academic publishers; Amsterdam: 1998. 
  • 3b The Flavonoids   Harborne JB. Mabry H. Chapman & Hall; New York: 1988. 
  • 4a Yang J. Fan S. Pei H. Zhu B. Xu W. Naganawa H. Hamada M. Takeuchi T. J. Antibiot.  1991,  44:  1277 
  • 4b Suetsuna K. Osajima Y. Agric. Biol. Chem.  1989,  53:  241 
  • 5 Hanessian S. Deoxy Sugars   American Chemical Society; Washington DC.: 1968. 
  • 6 Burnouf C. Lopez JC. Calvo-Flores FG. De los Angeles Laborde M. Olesker A. Lukacs G. J. Chem. Soc., Chem. Commun.  1990,  823 
  • 7a Dötz KH. Ehlenz R. Paetsch D. Angew. Chem. Int. Ed. Engl.  1997,  36:  2376 
  • 7b Hallett MR. Painter JE. Ricketts D. Tetrahedron Lett.  1998,  39:  2851 
  • 8a Das J. Schmidt RR. Eur. J. Org. Chem.  1998,  1609 
  • 8b Winterfeld GA. Ito Y. Ogawa T. Schmidt RR. Eur. J. Org. Chem.  1999,  1167 
  • 8c Winterfeld GA. Khodair AI. Schmidt RR. Eur. J. Org. Chem.  2003,  1009 
  • 8d

    Khodair, A. I.; Schmidt, R. R. Eur. J. Org. Chem., in print.

  • 8e Pachamuthu K. Gupta A. Das J. Schmidt RR. Vankar YD. Eur. J. Org. Chem.  2002,  1479 
  • 8f Winterfeld GA. Das J. Schmidt RR. Eur. J. Org. Chem.  2000,  3047 
  • 9a Lemieux RU. Nagabushan TL. O’Neill IK. Tetrahedron Lett.  1964,  5:  1909 
  • 9b Lemieux RU. Nagabushan TL. O’Neill IK. Can. J. Chem.  1968,  46:  413 
  • 10 Kraus GA. Thurston J. Thomas PJ. Tetrahedron Lett.  1988,  29:  1879 
  • 11 Corey EJ. Estreicher H. Tetrahedron Lett.  1981,  22:  603 
  • 13 Dufner G. Ph.D. Dissertation   Universität Konstanz; Germany: 1997. 
  • 14 Iida H. Tamazaki N. Kibayashi C. J. Org. Chem.  1987,  52:  1956 
  • 15 Sunazuka T. Tabata N. Nagamitsu T. Tomoda H. Omura S. Tetrahedron Lett.  1993,  34:  6659 
12

General experimental procedure for 6, 9, 10 and 12: A solution of 2-nitro glycal (1 mmol) and Danishefky’s diene (1.1 mmol) in dry toluene (2 mL) was refluxed under argon for 36 h. The reaction mixture was allowed to cool and the toluene was removed under reduced pressure. Then a mixture of THF-10% H2SO4 in H2O (2:1) was added and stirred at room temperature for 30 min. The product was isolated by extractive workup followed by filtration by column chromatography. The hydrolyzed product was dissolved in 1 M NaOCH3 in methanol (2 mL) and heated at 50 °C for 1.5 h. Methanol was evaporated followed by neutralization with saturated aq NH4Cl solution and extracted with ethyl acetate. The organic layer was washed with water, brine and dried over anhydrous MgSO4. Evaporation of the solvent yielded the benzannulated pyrans.
For compound 5: A mixture of hydrolyzed products 3 and 4 and DBN (3 equiv) in toluene (2 mL) was refluxed for 24 h. The reaction mixture was neutralized with aq NH4Cl after removal of the toluene followed by extraction with ethyl acetate. The organic layer was washed with dilute HCl, water, brine and dried over anhydrous MgSO4. Evaporation of the solvent and purification by column chromatography yielded the product 5 in 68% yield.
Some selected data:
5: [α]D 20 = -39.1 (c 1, CHCl3); 1H NMR (250 MHz): δ 2.86 (br s, 1 H), 3.45-3.55 (m, 2 H), 3.59 (dd, J = 1.99, 7.82 Hz, 1 H), 3.93 (d, J = 10.8 Hz, 1 H), 4.09 (d, J = 10.8 Hz, 1 H), 4.19 (br s, 1 H), 4.25 (d, J = 11.46 Hz, 1 H), 4.44 (d, J = 11.46 Hz, 1 H), 4.43-4.54 (m, 3 H), 5.37 (br s, 1 H), 6.81-6.85 (m, 2 H), 6.93-6.97 (m, 2 H), 7.18-7.35 (m, 15 H). 13C NMR (62.9 MHz): δ 69.7, 70.4, 71.2, 73.3, 73.9, 80.3, 81.1, 115.4, 127.6, 127.7, 127.9, 128.2, 128.3, 129.1, 130.5, 137.5, 137.8, 156.1. MALDI: m/z 507 (M + Na+). Calcd: C, 76.80; H, 6.66. Found: C, 76.55; H, 6.39.
6: [α]D 20 = +6.3 (c 1, CHCl3); 1H NMR (250 MHz): δ 3.71-3.83 (m, 2 H), 4.14 (dd, J = 2.2 Hz, 3.2 Hz, 1 H), 4.34 (td, J = 1.4 Hz, 5.9 Hz, 1 H), 4.44 (d, J= 11.9 Hz, 1 H), 4.53 (d, J = 11.9 Hz, 1 H), 4.57-4.86 (m, 5 H), 5.14 (br s, 1 H), 6.29 (d, J = 2.4 Hz, 1 H), 6.39 (dd, J = 2.5 Hz, 8.3 Hz, 1 H), 7.20-7.40 (m, 16 H). 13C NMR (62.9 MHz): δ 69.1, 70.1, 71.8, 73.1, 73.5, 74.0, 75.8, 103.1, 108.6, 114.0, 127.7, 127.8, 128.1, 128.3, 128.4, 129.3, 137.7, 138.1, 153.9, 156.7. MALDI: m/z 505 (M + Na+). Calcd: C, 77.16; H, 6.27. Found: C, 76.82; H, 6.57.
9: [α]D 20 = +26.7 (c 1, CHCl3); 1H NMR (250 MHz): δ 3.7-3.89 (m, 2 H), 4.04 (t, J = 6.1 Hz, 1 H), 4.29-4.35 (m, 1 H), 4.58-4.80 (m, 7 H), 5.4 (br s, 1 H), 6.34 (d, J = 2.43 Hz, 1 H), 6.4 (dd, J = 2.44 Hz, 8.34 Hz, 1 H), 7.1 (d, J = 8.38 Hz, 1 H), 7.23-7.37 (m, 15 H). 13C NMR (62.9 MHz): δ 69.0, 71.2, 73.1, 73.5, 73.6, 76.1, 77.01, 103.3, 109, 113.9, 127.7, 127.9, 128.0, 128.5, 130.2, 137.8, 138.2, 154.6, 156.7. MALDI: m/z 505(M + Na+).
10: [α]D 20 = +30.1 (c 1, CHCl3); 1H NMR (250 MHz): δ 3.53-3.92 (m, 6 H), 4.35-4.92(m, 17 H), 5.18 (br s, 1 H), 5.34 (d, J = 3.6 Hz, 1 H), 6.37 (d, J = 2.18 Hz, 1 H), 6.42 (dd, J = 2.32 Hz, 8.24 Hz, 1 H), 7.12 (dd, J = 3.26 Hz, 7.06 Hz, 1 H), 7.24-7.30 (m, 30 H). 13C NMR (62.9 MHz): δ 68.4, 69.0, 69.4, 70.9, 72.9, 73.3, 73.4, 74.5, 75.0, 75.5, 76.9, 80.0, 81.7, 96.1, 103.7, 109.1, 112.7, 127.6, 127.7, 127.8, 127.9, 128.3, 128.4, 131.1, 137.9, 138.0, 138.1, 138.3, 138.8, 154.9, 156.9. MALDI: m/z 937 (M + Na+).
12: [α]D 20 = -27.1 (c 1, CHCl3); 1H NMR (250 MHz): δ 1.46 (d, J = 6.48 Hz, 3 H), 3.69 (dd, J = 6.83 Hz, 8.08 Hz, 1 H), 4.11-4.19 (m, 1 H), 4.65-4.88 (m, 6 H), 6.27 (d, J = 2.48 Hz, 1 H), 6.40 (dd, J = 2.51 Hz, 8.39 Hz, 1 H), 7.15 (dd, J = 0.64 Hz, 8.41 Hz, 1 H), 7.23-7.36 (m, 10 H). 13C NMR (62.9 MHz): δ 17.9, 71.5, 73.7, 74.4, 77.3, 79.1, 102.9, 109.0, 114.7, 127.7, 127.87, 127.89, 127.9, 128.5, 129.8, 137.8, 138.2, 155.0, 156.5. Cald: C, 76.57; H, 6.43. Found: C, 76.25; H, 6.32.
15: [α]D 20 = +53.6 (c 0.5, CHCl3); 1H NMR (600 MHz): δ 2.02, 2.12 (2 s, 6 H), 2.25-2.33 (m, 1 H), 2.4-2.5 (m, 1 H), 2.9 (t, J = 6.7 Hz, 1 H), 3.77 (s, 3 H), 4.2-4.35 (m, 3 H), 5.08-5.17 (m, 3 H), 5.8-5.9 (m, 1 H), 6.46 (d, J = 1 Hz, 1 H), 6.53 (dd, J = 2.5 Hz, 8.4 Hz, 1 H), 6.98 (d, J = 8.5 Hz, 1 H). 13C NMR (150.8 MHz): δ 20.8, 21.0, 38.4, 41.5, 55.3, 63.3, 68.0, 69.9, 101.2, 108.5, 118.0, 130.5, 134.8, 153.5, 159.4, 170.4, 170.7. Calcd: C, 64.66; H, 6.63. Found: C, 64.95; H, 7.0.
17: [α]D 20 = +29.6 (c 1, CHCl3); 1H NMR (250 MHz): δ 1.98, 2.0, 2.1 (3 s, 9H), 2.77 (d, J = 6.9 Hz, 2 H), 3.75 (s, 3 H), 4.07 (dd, J = 6.8 Hz, 11.8 Hz, 1 H), 4.23 (dd, J = 4.6 Hz, 11.8 Hz, 1 H), 5.13-5.26 (m, 2 H), 6.92-7.2 (m, 4 H). 13C NMR (62.9 MHz): δ 20.6, 20.7, 21.0, 36.2, 62.2, 70.6, 72.0, 121.6, 130.2, 133.6, 149.6, 169.3, 170.0, 170.4.