Abstract
The precise molecular cause of insulin resistance has not yet been elucidated. Resistance to the normal action of insulin contributes to the pathogenesis of a number of common human disorders, including type 1 (insulin-dependent) and type 2 (non-insulin-dependent) diabetes mellitus, hypertension, and the Metabolic Syndrome X, thus constituting a major public health problem. A disease program aimed at combating this disorder should focus on the identification of targets for therapeutic intervention which may overcome insulin resistance and hence the associated metabolic consequences characteristic of the Metabolic Syndrome. Although the primary defect in the pathogenesis of type 2 diabetes is unknown, genetic and environmental factors are likely to contribute to the manifestation of this progressive metabolic disorder, which is usually not clinically apparent until mid-life. Defects at the level of glucose uptake/phosphorylation characterize insulin resistance in skeletal muscle of type 2 diabetic patients. Identification of putative components of the insulin receptor-signaling pathway may offer insights into mechanisms involved in insulin resistance. Enhanced flux of free fatty acids due to impaired lipid metabolism may contribute to impaired insulin secretion and peripheral insulin resistance. Genes regulating lipolysis are prime candidates for susceptibility towards the metabolic syndrome. Here we describe pathways constituting complex interactions that control glucose homeostasis. We will be considering 1) regulation of glucose uptake by the insulin receptor signaling pathway, and 2) control of adipogenesis and insulin sensitivity by the sterol response element binding protein (SREBP) pathway.
Key words
Gene regulation - glucose metabolism - insulin signaling - lipid metabolism - SREBP
References
1
Accili D, Drago J, Lee E J, Johnson M D, Cool M H, Salvatore P, Asico L D, Jose P A, Taylor S I, Westphal H.
Early neonatal death in mice homozygous for a null allele of the insulin receptor gene.
Nat Genet.
1996;
12
106-109
2
Almind K, Inoue G, Pedersen O, Kahn C R.
A common amino acid polymorphism in insulin receptor substrate-1 causes impaired insulin signaling. Evidence from transfection studies.
J Clin Invest.
1996;
97
2569-2575
3
Aspinwall C A, Lakey J R, Kennedy R T.
Insulin-stimulated insulin secretion in single pancreatic beta cells.
J Biol Chem.
1999;
274
6360-6365
4
Björnholm M, Kawano Y, Lehtihet M, Zierath J R.
Insulin receptor substrate-1 phosphorylation and phosphatidylinositol 3-kinase activity are decreased in skeletal muscle from NIDDM subjects following in vivo insulin stimulation.
Diabetes.
1997;
46
524-527
5
Brüning J C, Michael M D, Winnay J N, Hayashi T, Horsch D, Accili D, Goodyear L J, Kahn C R.
A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance.
Mol Cell.
1998;
2
559-569
6
Bunone G, Briand P A, Miksicek R J, Picard D.
Activation of the unliganded estrogen receptor by EGF involves the MAP kinase pathway and direct phosphorylation.
EMBO J.
1996;
15
2174-2183
7
Chang P Y, Benecke H, Le Marchand-Brustel Y, Lawitts J, Moller D E.
Expression of a dominant-negative mutant human insulin receptor in the muscle of transgenic mice.
J Biol Chem.
1994;
269
16034-16040
8
DeFronzo R A.
The Triumvirate: β-cell, muscle or liver. A collusion responsible for NIDDM.
Diabetes.
1988;
37
667-687
9
Fiedler M, Zierath J R, Selen G, Wallberg-Henriksson H, Liang Y, Sakariassen K S.
5-aminoimidazole-4-carboxy-amide-1-beta-D-ribofuranoside treatment ameliorates hyperglycaemia and hyperinsulinaemia but not dyslipidaemia in KKAy-CETP mice.
Diabetologia.
2001;
44
2180-2186
10
Flier J S, Hollenberg A N.
ADD-1 provides major new insight into the mechanism of insulin action.
Proc Natl Acad Sci USA.
1999;
96
14191-14192
11
Foretz M, Pacot C, Dugail I, Lemarchand P, Guichard C, Le Liepvre, Berthelier-Lubrano C, Spiegelman B, Kim J B, Ferre P, Foufelle F.
ADD1/SREBP-1 c is required in the activation of hepatic lipogenic gene expression by glucose.
Mol Cell Biol.
1999;
19
3760-3768
12
Friedman J E, Dohm G L, Leggett-Frazier N, Elton C W, Tapscott E B, Pories W P, Caro J F.
Restoration of insulin responsiveness in skeletal muscle of morbidly obese patients after weight loss. Effect on muscle glucose transport and glucose transporter GLUT4.
J Clin Invest.
1992;
89
701-705
13
Hayes S A, Miller J M, Hoshizaki D K.
Serpent, a GATA-like transcription factor gene, induces fat-cell development in Drosophila melanogaster.
Development.
2001;
128
1193-2000
14
Hitman G A, McCarthy M I.
Genetics of non-insulin dependent diabetes mellitus.
Baillières Clin Endocrinol Metab.
1991;
5
455-476
15
Horton J D, Goldstein J L, Brown M S.
SREBPs: Activators of the complete program of cholesterol and fatty acid synthesis in the liver.
J Clin Invest.
2002;
109
1125-1131
16
Hu E, Tontonoz P, Spiegelman B M.
Transdifferentiation of myoblasts by the adipogenic transcription factors PPAR gamma and C/EBP alpha.
Proc Natl Acad Sci USA.
1995;
92
9856-9860
17
Imai Y, Philippe N, Sesti G, Accili D, Taylor S I.
Expression of variant forms of insulin receptor substrate-1 identified in patients with non-insulin-dependent diabetes mellitus.
J Clin Endocrinol Metab.
1997;
82
4201-4207
18
Joshi R L, Lamothe B, Cordonnier N, Mesbah K, Monthioux E, Jami J, Bucchini D.
Targeted disruption of the insulin receptor gene in the mouse results in neonatal lethality.
EMBO J.
1996;
15
1542-1547
19
Kim J B, Spiegelman B M.
ADD1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism.
Genes Dev.
1996;
10
1096-1107
20
Kim J B, Spotts G D, Halvorsen Y D, Shih H M, Ellenberger T, Towle H C, Spiegelman B M.
Dual DNA binding specificity of ADD1/SREBP1 controlled by a single amino acid in the basic helix-loop-helix domain.
Mol Cell Biol.
1995;
15
2582-2588
21
Kops G J, de Ruiter N D, De Vries-Smits A M, Powell D R, Bos J L, Burgering B M.
Direct control of the Forkhead transcription factor AFX by protein kinase B.
Nature.
1999;
398
630-634
22
Kotzka J, Muller-Wieland D, Koponen A, Njamen D, Kremer L, Roth G, Munck M, Knebel B, Krone W.
ADD1/SREBP-1 c mediates insulin-induced gene expression linked to the MAP kinase pathway.
Biochem Biophys Res Commun.
1998;
249
375-379
23
Krook A, O'Rahilly S.
Mutant insulin receptors in syndromes of insulin resistance.
Baillières Clin Endocrinol Metab.
1996;
10
97-122
24
Krook A, Roth R A, Jiang X J, Zierath J R, Wallberg-Henriksson H.
Insulin-stimulated Akt kinase activity is reduced in skeletal muscle from NIDDM subjects.
Diabetes.
1998;
47
1281-1286
25
Krook A, Björnholm M, Jiang X-J, Galuska D, Fahlman R, Myers M, Wallberg-Henriksson H, Zierath J R.
Characterization of signal transduction and glucose transport in skeletal muscle from Type 2 (non-insulin-dependent) diabetic patients.
Diabetes.
2000;
49
284-292
26
Kulkarni R N, Bruning J C, Winnay J N, Postic C, Magnuson M A, Kahn C R.
Tissue-specific knockout of the insulin receptor in pancreatic beta cells creates an insulin secretory defect similar to that in type 2 diabetes.
Cell.
1999;
96
329-339
27
Lauro D, Kido Y, Castle A L, Zarnowski M J, Hayashi H, Ebina Y, Accili D.
Impaired glucose tolerance in mice with a targeted impairment of insulin action in muscle and adipose tissue.
Nat Genet.
1998;
20
294-298
28
Leibiger I B, Leibiger B, Moede T, Berggren P O.
Exocytosis of insulin promotes insulin gene transcription via the insulin receptor/PI-3 kinase/p70 s6 kinase and CaM kinase pathways.
Mol Cell.
1998;
1
933-938
29
Makimattila S, Virkamaki A, Malmström R, Utriainen T, Yki-Järvinen H.
Insulin resistance in type I diabetes mellitus: a major role for reduced glucose extraction.
J Clin Endocrinol Metab.
1996;
81
707-712
30
Moller D E, Chang P Y. Yaspelkis BB 3rd .
Transgenic mice with muscle-specific insulin resistance develop increased adiposity, impaired glucose tolerance, and dyslipidemia.
Endocrinology.
1996;
137
2397-2405
31
Moore L A, Broihier H T, Van Doren M, Lehmann R.
Gonadal mesoderm and fat body initially follow a common developmental path in Drosophila.
Development.
1998;
125
837-844
32
Nakae J, Kitamura T, Ogawa W, Kasuga M, Accili D.
Insulin regulation of gene expression through the forkhead transcription factor Foxo1 (FKHR) requires kinases distinct from Akt.
Biochemistry.
2001;
40
11768-11776
33
Nakae J, Biggs, III W H, Kitamura T, Cavenee W K, Wright C VE, Arden K C, Accili D.
Regulation of insulin action and pancreatic β-cell function by mutated alleles of the gene encoding forkhead transcription factor Foxo1.
Nat Genet.
2002;
32
245-253
34
O'Brien R M, Streeper R S, Ayala J E, Stadelmaier B T, Hornbuckle L A.
Insulin-regulated gene expression.
Biochem Soc Trans.
2001;
29
552-558
35
Ogg S, Paradis S, Gottlieb S, Patterson G I, Lee L, Tissenbaum H A, Ruvkun G.
The fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans .
Nature.
1997;
389
994-999
36
O'Rahilly S, Choi W H, Patel P, Turner R C, Flier J S, Moller D E.
Detection of mutations in insulin-receptor gene in NIDDM patients by analysis of single-stranded conformation polymorphisms.
Diabetes.
1991;
40
777-782
37
Poitout V, Robertson R P.
Minireview: Secondary β-cell failure in Type 2 diabetes: A convergence of glucotoxicity and lipotoxicity.
Endocrinology.
2002;
143
339-342
38
Ryder J W, Yang J, Galuska D, Rincon J, Björnholm M, Krook A, Lund S, Pedersen O, Wallberg-Henriksson H, Zierath J R, Holman G D.
Use of a novel impermeable biotinylated photolabelling reagent to assess insulin and hypoxia-stimulated cell surface GLUT4 content in skeletal muscle from type 2 diabetic patients.
Diabetes.
2000;
49
647-654
39
Sam S, Leise W, Hoshizaki D K.
The Serpent gene is necessary for progression through the early stages of fat-body development.
Mech Dev.
1996;
60
197-205
40
Song X M, Fiedler M, Galuska D, Ryder J W, Fernstrom M, Chibalin A V, Wallberg-Henriksson H, Zierath J R.
5-Aminoimidazole-4-carboxamide ribonucleoside treatment improves glucose homeostasis in insulin-resistant diabetic (ob/ob) mice.
Diabetologia.
2002;
45
56-65
41
Storgaard H, Song X M, Jensen C B, Madsbad S, Björnholm M, Vaag A, Zierath J R.
Insulin signal transduction in skeletal muscle from glucose-intolerant relatives of type 2 diabetic patients.
Diabetes.
2001;
50
2770-2778
42
Streicher R, Kotzka J, Muller-Wieland D, Siemeister G, Munck M, Avci H, Krone W.
SREBP-1 mediates activation of the low density lipoprotein receptor promoter by insulin and insulin-like growth factor-I.
J Biol Chem.
1996;
271
7128-7133
43
Sul H S, Latasa M J, Moon Y, Kim K H.
Regulation of the fatty acid synthase promoter by insulin.
J Nutr.
2000;
130 (Suppl 2 S)
315S-320S
44
Taylor S I.
Lilly Lecture: Molecular mechanisms of insulin resistance. Lessons from patients with mutations in the insulin-receptor gene.
Diabetes.
1992;
41
1473-1490
45
Tontonoz P, Kim J B, Graves R A, Spiegelman B M.
ADD1: a novel helix-loop-helix transcription factor associated with adipocyte determination and differentiation.
Mol Cell Biol.
1993;
13
4753-4759
46
Tong Q, Dalgin G, Xu H, Ting C N, Leiden J M, Hotamisligil G S.
Function of GATA transcription factors in preadipocyte-adipocyte transition.
Science.
2000;
290
134-138
47
Wang X, Sato R, Brown M S, Hua X, Goldstein J L.
SREBP-1, a membrane-bound transcription factor released by sterol-regulated proteolysis.
Cell.
1994;
77
53-62
48
White M F, Yenush L.
The IRS-signaling system: A network of docking proteins that mediate insulin and cytokine action.
Curr Top Microbiol Immunol.
1998;
228
179-208
49
Withers D J, Gutierrez J S, Towery H, Burks D J, Ren J M, Previs S, Zhang Y, Bernal D, Pons S, Shulman G I, Bonner-Weir S, White M F.
Disruption of IRS-2 causes type 2 diabetes in mice.
Nature.
1998;
391
900-904
50
Yang Z, Whelan J, Babb R, Bowen B R.
An mRNA splice variant of the AFX gene with altered transcriptional activity.
J Biol Chem.
2002;
277
8068-8075
51
Yokoyama C, Wang X, Briggs M R, Admon A, Wu J, Hua X, Goldstein J L, Brown M S.
SREBP-1, a basic helix-loop-helix-leucine zipper protein that controls transcription of the low density lipoprotein receptor gene.
Cell.
1993;
75
187-197
52
Yu K, Bayona W, Kallen C B, Harding H P, Ravera C P, McMahon G, Brown M, Lazar M A.
Differential activation of peroxisome proliferator-activated receptors by eicosanoids.
J Biol Chem.
1995;
270
23975-23983
53
Zheng Z, Otani H, Brown M S, Goldstein J L.
Independent regulation of sterol regulatory element-binding proteins 1 and 2 in hamster liver.
Proc Natl Acad Sci USA.
1995;
92
935-938
54
Zierath J R, He L, Guma A, Wahlström E, Klip A, Wallberg-Henriksson H.
Insulin action on glucose transport and plasma membrane GLUT4 content in skeletal muscle from patients with NIDDM.
Diabetologia.
1996;
39
1180-1189
55
Zierath J R, Krook A, Wallberg-Henriksson H.
Insulin action and insulin resistance in human skeletal muscle.
Diabetologia.
2000;
43
821-835
Ph.D., Professor of Physiology Juleen R. Zierath
Department of Surgical Sciences and Section for Integrative Physiology Karolinska Institutet
von Eulers väg 4, II
17177 Stockholm
Sweden
Phone: + 4687287580
Fax: + 46 8 33 54 36
Email: Juleen.Zierath@fyfa.ki.se