Subscribe to RSS
DOI: 10.1055/s-2003-40462
J. A. Barth Verlag in Georg Thieme Verlag Stuttgart · New York
Analysis of Insulin Signaling Pathways through Comparative Genomics. Mapping Mechanisms for Insulin Resistance in Type 2 (Non-Insulin-Dependent) Diabetes Mellitus
Publication History
Received: May 30, 2002
First decision: September 8, 2002
Accepted: October 20, 2002
Publication Date:
07 July 2003 (online)

Abstract
The precise molecular cause of insulin resistance has not yet been elucidated. Resistance to the normal action of insulin contributes to the pathogenesis of a number of common human disorders, including type 1 (insulin-dependent) and type 2 (non-insulin-dependent) diabetes mellitus, hypertension, and the Metabolic Syndrome X, thus constituting a major public health problem. A disease program aimed at combating this disorder should focus on the identification of targets for therapeutic intervention which may overcome insulin resistance and hence the associated metabolic consequences characteristic of the Metabolic Syndrome. Although the primary defect in the pathogenesis of type 2 diabetes is unknown, genetic and environmental factors are likely to contribute to the manifestation of this progressive metabolic disorder, which is usually not clinically apparent until mid-life. Defects at the level of glucose uptake/phosphorylation characterize insulin resistance in skeletal muscle of type 2 diabetic patients. Identification of putative components of the insulin receptor-signaling pathway may offer insights into mechanisms involved in insulin resistance. Enhanced flux of free fatty acids due to impaired lipid metabolism may contribute to impaired insulin secretion and peripheral insulin resistance. Genes regulating lipolysis are prime candidates for susceptibility towards the metabolic syndrome. Here we describe pathways constituting complex interactions that control glucose homeostasis. We will be considering 1) regulation of glucose uptake by the insulin receptor signaling pathway, and 2) control of adipogenesis and insulin sensitivity by the sterol response element binding protein (SREBP) pathway.
Key words
Gene regulation - glucose metabolism - insulin signaling - lipid metabolism - SREBP
References
- 1 Accili D, Drago J, Lee E J, Johnson M D, Cool M H, Salvatore P, Asico L D, Jose P A, Taylor S I, Westphal H. Early neonatal death in mice homozygous for a null allele of the insulin receptor gene. Nat Genet. 1996; 12 106-109
- 2 Almind K, Inoue G, Pedersen O, Kahn C R. A common amino acid polymorphism in insulin receptor substrate-1 causes impaired insulin signaling. Evidence from transfection studies. J Clin Invest. 1996; 97 2569-2575
- 3 Aspinwall C A, Lakey J R, Kennedy R T. Insulin-stimulated insulin secretion in single pancreatic beta cells. J Biol Chem. 1999; 274 6360-6365
- 4 Björnholm M, Kawano Y, Lehtihet M, Zierath J R. Insulin receptor substrate-1 phosphorylation and phosphatidylinositol 3-kinase activity are decreased in skeletal muscle from NIDDM subjects following in vivo insulin stimulation. Diabetes. 1997; 46 524-527
- 5 Brüning J C, Michael M D, Winnay J N, Hayashi T, Horsch D, Accili D, Goodyear L J, Kahn C R. A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance. Mol Cell. 1998; 2 559-569
- 6 Bunone G, Briand P A, Miksicek R J, Picard D. Activation of the unliganded estrogen receptor by EGF involves the MAP kinase pathway and direct phosphorylation. EMBO J. 1996; 15 2174-2183
- 7 Chang P Y, Benecke H, Le Marchand-Brustel Y, Lawitts J, Moller D E. Expression of a dominant-negative mutant human insulin receptor in the muscle of transgenic mice. J Biol Chem. 1994; 269 16034-16040
- 8 DeFronzo R A. The Triumvirate: β-cell, muscle or liver. A collusion responsible for NIDDM. Diabetes. 1988; 37 667-687
- 9 Fiedler M, Zierath J R, Selen G, Wallberg-Henriksson H, Liang Y, Sakariassen K S. 5-aminoimidazole-4-carboxy-amide-1-beta-D-ribofuranoside treatment ameliorates hyperglycaemia and hyperinsulinaemia but not dyslipidaemia in KKAy-CETP mice. Diabetologia. 2001; 44 2180-2186
- 10 Flier J S, Hollenberg A N. ADD-1 provides major new insight into the mechanism of insulin action. Proc Natl Acad Sci USA. 1999; 96 14191-14192
- 11 Foretz M, Pacot C, Dugail I, Lemarchand P, Guichard C, Le Liepvre, Berthelier-Lubrano C, Spiegelman B, Kim J B, Ferre P, Foufelle F. ADD1/SREBP-1 c is required in the activation of hepatic lipogenic gene expression by glucose. Mol Cell Biol. 1999; 19 3760-3768
- 12 Friedman J E, Dohm G L, Leggett-Frazier N, Elton C W, Tapscott E B, Pories W P, Caro J F. Restoration of insulin responsiveness in skeletal muscle of morbidly obese patients after weight loss. Effect on muscle glucose transport and glucose transporter GLUT4. J Clin Invest. 1992; 89 701-705
- 13 Hayes S A, Miller J M, Hoshizaki D K. Serpent, a GATA-like transcription factor gene, induces fat-cell development in Drosophila melanogaster. Development. 2001; 128 1193-2000
- 14 Hitman G A, McCarthy M I. Genetics of non-insulin dependent diabetes mellitus. Baillières Clin Endocrinol Metab. 1991; 5 455-476
- 15 Horton J D, Goldstein J L, Brown M S. SREBPs: Activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest. 2002; 109 1125-1131
- 16 Hu E, Tontonoz P, Spiegelman B M. Transdifferentiation of myoblasts by the adipogenic transcription factors PPAR gamma and C/EBP alpha. Proc Natl Acad Sci USA. 1995; 92 9856-9860
- 17 Imai Y, Philippe N, Sesti G, Accili D, Taylor S I. Expression of variant forms of insulin receptor substrate-1 identified in patients with non-insulin-dependent diabetes mellitus. J Clin Endocrinol Metab. 1997; 82 4201-4207
- 18 Joshi R L, Lamothe B, Cordonnier N, Mesbah K, Monthioux E, Jami J, Bucchini D. Targeted disruption of the insulin receptor gene in the mouse results in neonatal lethality. EMBO J. 1996; 15 1542-1547
- 19 Kim J B, Spiegelman B M. ADD1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism. Genes Dev. 1996; 10 1096-1107
- 20 Kim J B, Spotts G D, Halvorsen Y D, Shih H M, Ellenberger T, Towle H C, Spiegelman B M. Dual DNA binding specificity of ADD1/SREBP1 controlled by a single amino acid in the basic helix-loop-helix domain. Mol Cell Biol. 1995; 15 2582-2588
- 21 Kops G J, de Ruiter N D, De Vries-Smits A M, Powell D R, Bos J L, Burgering B M. Direct control of the Forkhead transcription factor AFX by protein kinase B. Nature. 1999; 398 630-634
- 22 Kotzka J, Muller-Wieland D, Koponen A, Njamen D, Kremer L, Roth G, Munck M, Knebel B, Krone W. ADD1/SREBP-1 c mediates insulin-induced gene expression linked to the MAP kinase pathway. Biochem Biophys Res Commun. 1998; 249 375-379
- 23 Krook A, O'Rahilly S. Mutant insulin receptors in syndromes of insulin resistance. Baillières Clin Endocrinol Metab. 1996; 10 97-122
- 24 Krook A, Roth R A, Jiang X J, Zierath J R, Wallberg-Henriksson H. Insulin-stimulated Akt kinase activity is reduced in skeletal muscle from NIDDM subjects. Diabetes. 1998; 47 1281-1286
- 25 Krook A, Björnholm M, Jiang X-J, Galuska D, Fahlman R, Myers M, Wallberg-Henriksson H, Zierath J R. Characterization of signal transduction and glucose transport in skeletal muscle from Type 2 (non-insulin-dependent) diabetic patients. Diabetes. 2000; 49 284-292
- 26 Kulkarni R N, Bruning J C, Winnay J N, Postic C, Magnuson M A, Kahn C R. Tissue-specific knockout of the insulin receptor in pancreatic beta cells creates an insulin secretory defect similar to that in type 2 diabetes. Cell. 1999; 96 329-339
- 27 Lauro D, Kido Y, Castle A L, Zarnowski M J, Hayashi H, Ebina Y, Accili D. Impaired glucose tolerance in mice with a targeted impairment of insulin action in muscle and adipose tissue. Nat Genet. 1998; 20 294-298
- 28 Leibiger I B, Leibiger B, Moede T, Berggren P O. Exocytosis of insulin promotes insulin gene transcription via the insulin receptor/PI-3 kinase/p70 s6 kinase and CaM kinase pathways. Mol Cell. 1998; 1 933-938
- 29 Makimattila S, Virkamaki A, Malmström R, Utriainen T, Yki-Järvinen H. Insulin resistance in type I diabetes mellitus: a major role for reduced glucose extraction. J Clin Endocrinol Metab. 1996; 81 707-712
- 30 Moller D E, Chang P Y. Yaspelkis BB 3rd . Transgenic mice with muscle-specific insulin resistance develop increased adiposity, impaired glucose tolerance, and dyslipidemia. Endocrinology. 1996; 137 2397-2405
- 31 Moore L A, Broihier H T, Van Doren M, Lehmann R. Gonadal mesoderm and fat body initially follow a common developmental path in Drosophila. Development. 1998; 125 837-844
- 32 Nakae J, Kitamura T, Ogawa W, Kasuga M, Accili D. Insulin regulation of gene expression through the forkhead transcription factor Foxo1 (FKHR) requires kinases distinct from Akt. Biochemistry. 2001; 40 11768-11776
- 33 Nakae J, Biggs, III W H, Kitamura T, Cavenee W K, Wright C VE, Arden K C, Accili D. Regulation of insulin action and pancreatic β-cell function by mutated alleles of the gene encoding forkhead transcription factor Foxo1. Nat Genet. 2002; 32 245-253
- 34 O'Brien R M, Streeper R S, Ayala J E, Stadelmaier B T, Hornbuckle L A. Insulin-regulated gene expression. Biochem Soc Trans. 2001; 29 552-558
- 35 Ogg S, Paradis S, Gottlieb S, Patterson G I, Lee L, Tissenbaum H A, Ruvkun G. The fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature. 1997; 389 994-999
- 36 O'Rahilly S, Choi W H, Patel P, Turner R C, Flier J S, Moller D E. Detection of mutations in insulin-receptor gene in NIDDM patients by analysis of single-stranded conformation polymorphisms. Diabetes. 1991; 40 777-782
- 37 Poitout V, Robertson R P. Minireview: Secondary β-cell failure in Type 2 diabetes: A convergence of glucotoxicity and lipotoxicity. Endocrinology. 2002; 143 339-342
- 38 Ryder J W, Yang J, Galuska D, Rincon J, Björnholm M, Krook A, Lund S, Pedersen O, Wallberg-Henriksson H, Zierath J R, Holman G D. Use of a novel impermeable biotinylated photolabelling reagent to assess insulin and hypoxia-stimulated cell surface GLUT4 content in skeletal muscle from type 2 diabetic patients. Diabetes. 2000; 49 647-654
- 39 Sam S, Leise W, Hoshizaki D K. The Serpent gene is necessary for progression through the early stages of fat-body development. Mech Dev. 1996; 60 197-205
- 40 Song X M, Fiedler M, Galuska D, Ryder J W, Fernstrom M, Chibalin A V, Wallberg-Henriksson H, Zierath J R. 5-Aminoimidazole-4-carboxamide ribonucleoside treatment improves glucose homeostasis in insulin-resistant diabetic (ob/ob) mice. Diabetologia. 2002; 45 56-65
- 41 Storgaard H, Song X M, Jensen C B, Madsbad S, Björnholm M, Vaag A, Zierath J R. Insulin signal transduction in skeletal muscle from glucose-intolerant relatives of type 2 diabetic patients. Diabetes. 2001; 50 2770-2778
- 42 Streicher R, Kotzka J, Muller-Wieland D, Siemeister G, Munck M, Avci H, Krone W. SREBP-1 mediates activation of the low density lipoprotein receptor promoter by insulin and insulin-like growth factor-I. J Biol Chem. 1996; 271 7128-7133
- 43 Sul H S, Latasa M J, Moon Y, Kim K H. Regulation of the fatty acid synthase promoter by insulin. J Nutr. 2000; 130 (Suppl 2 S) 315S-320S
- 44 Taylor S I. Lilly Lecture: Molecular mechanisms of insulin resistance. Lessons from patients with mutations in the insulin-receptor gene. Diabetes. 1992; 41 1473-1490
- 45 Tontonoz P, Kim J B, Graves R A, Spiegelman B M. ADD1: a novel helix-loop-helix transcription factor associated with adipocyte determination and differentiation. Mol Cell Biol. 1993; 13 4753-4759
- 46 Tong Q, Dalgin G, Xu H, Ting C N, Leiden J M, Hotamisligil G S. Function of GATA transcription factors in preadipocyte-adipocyte transition. Science. 2000; 290 134-138
- 47 Wang X, Sato R, Brown M S, Hua X, Goldstein J L. SREBP-1, a membrane-bound transcription factor released by sterol-regulated proteolysis. Cell. 1994; 77 53-62
- 48 White M F, Yenush L. The IRS-signaling system: A network of docking proteins that mediate insulin and cytokine action. Curr Top Microbiol Immunol. 1998; 228 179-208
- 49 Withers D J, Gutierrez J S, Towery H, Burks D J, Ren J M, Previs S, Zhang Y, Bernal D, Pons S, Shulman G I, Bonner-Weir S, White M F. Disruption of IRS-2 causes type 2 diabetes in mice. Nature. 1998; 391 900-904
- 50 Yang Z, Whelan J, Babb R, Bowen B R. An mRNA splice variant of the AFX gene with altered transcriptional activity. J Biol Chem. 2002; 277 8068-8075
- 51 Yokoyama C, Wang X, Briggs M R, Admon A, Wu J, Hua X, Goldstein J L, Brown M S. SREBP-1, a basic helix-loop-helix-leucine zipper protein that controls transcription of the low density lipoprotein receptor gene. Cell. 1993; 75 187-197
- 52 Yu K, Bayona W, Kallen C B, Harding H P, Ravera C P, McMahon G, Brown M, Lazar M A. Differential activation of peroxisome proliferator-activated receptors by eicosanoids. J Biol Chem. 1995; 270 23975-23983
- 53 Zheng Z, Otani H, Brown M S, Goldstein J L. Independent regulation of sterol regulatory element-binding proteins 1 and 2 in hamster liver. Proc Natl Acad Sci USA. 1995; 92 935-938
- 54 Zierath J R, He L, Guma A, Wahlström E, Klip A, Wallberg-Henriksson H. Insulin action on glucose transport and plasma membrane GLUT4 content in skeletal muscle from patients with NIDDM. Diabetologia. 1996; 39 1180-1189
- 55 Zierath J R, Krook A, Wallberg-Henriksson H. Insulin action and insulin resistance in human skeletal muscle. Diabetologia. 2000; 43 821-835
Ph.D., Professor of Physiology Juleen R. Zierath
Department of Surgical Sciences and Section for Integrative Physiology
Karolinska Institutet
von Eulers väg 4, II
17177 Stockholm
Sweden
Phone: + 4687287580
Fax: + 46 8 33 54 36
Email: Juleen.Zierath@fyfa.ki.se