Plant Biol (Stuttg) 2003; 5(2): 143-150
DOI: 10.1055/s-2003-40725
Original Paper

Georg Thieme Verlag Stuttgart · New York

An Hsp90 Inhibitor, Geldanamycin, as a Brassinosteroid Antagonist: Evidence from Salt-Exposed Roots of Vigna radiata

G. N. Amzallag 1 , P. Goloubinoff 2
  • 1The Judea Center for Research and Development, Carmel, Israel
  • 2IE-BPV, Biology Building, University of Lausanne, CH-1015, Lausanne, Switzerland
Further Information

Publication History

Publication Date:
21 July 2003 (online)

Abstract

Treatment of non-stressed mung bean cuttings with 24-epibrassinolide (BR) inhibited elongation of adventitious roots, but it stimulated root elongation in plants exposed to 70 mM NaCl. These findings confirm that brassinosteroids are involved in control of division and elongation of root cells. We found that both positive and negative effects are counteracted by the presence of geldanamycin in the root medium. Because of the high specificity of geldanamycin for the chaperone Hsp90, this suggests that, as in animal cells, Hsp90 is involved in expression or transduction of the brassinosteroid signals in plants. Moreover, a detailed analysis of root ranking showed an additional geldanamycin-insensitive mode of action of BR, especially observed under salt stress conditions. These two modes differently affected elongation of the adventitious roots, depended on the phases of differentiation and on the presence of an environmental constraint.

References

  • 1 Adam G., Marquardt V.. Brassinosteroids.  Biochemistry. (1986);  25 1787-1799
  • 2 Amzallag G. N.. Data analysis in plant physiology: are we missing the reality?.  Plant Cell Env.. (2001);  24 881-890
  • 3 Bose S., Weikl T., Bugl H., Buchner J.. Chaperone function of Hsp90-associated proteins.  Science. (1996);  274 1715-1717
  • 4 Boston R. S., Viitanen P. V., Vierling E.. Molecular chaperones and protein folding in plants.  Plant Mol. Biol.. (1996);  32 191-222
  • 5 Buchner J.. Hsp90 & Co. - a holding for folding.  Trends Biochem. Sci.. (1999);  24 136-141
  • 6 Clouse S. D., Langford M., McMorris T. C.. A brassinosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development.  Plant Physiol.. (1996);  111 671-678
  • 7 Clouse S. D., Sasse J. M.. Brassinosteroids: essential regulators of plant growth and development.  Ann. Rev. Plant Physiol. Plant Mol. Biol.. (1998);  49 427-451
  • 8 Dhaubatel S., Browning K. S., Gallie D. R., Krishna P.. Brassinosteroid functions to protect the translational machinery and heat-shock protein synthesis following thermal stress.  Plant Journal. (2002);  29 681-691
  • 9 Diamant S., Rosental D., Elyahu N., Goloubinoff P.. Chemical chaperones regulate molecular chaperones in vitro and in cells under combined salt and heat stresses.  J. Biol. Chem.. (2001);  276 39586-39591
  • 10 Freeman B. C., Toft D. O., Morimoto R. I.. Molecular chaperone machines: chaperone activities of the cyclophylin Cyp-40 and the steroid aporeceptor-associated protein p23.  Science. (1996);  274 1718-1720
  • 11 Friedrichsen D. M., Joazeiro C. A., Li J., Hunter T., Chory J.. Brassinosteroid-insensitive-I is a ubiquitously expressed leucine-rich repeat receptor serine/treonine kinase.  Plant Physiol.. (2000);  123 1247-1256
  • 12 Gregory L. E.. Acceleration of plant growth through seed treatment with brassins.  Am. J. Bot.. (1981);  68 586-588
  • 13 He Z., Wang Z. I., Li J., Zhu Q., Lamb C., Ronald P., Chory J.. Perception of brassinosteroids by the extracellular domain of the receptor kinase BR11.  Science. (2000);  288 2360-2363
  • 14 Hu Y., Bao F., Li J.. Promotive effect of brassinosteroids on cell division involves a distinct CycD3-induction pathway in Arabidopsis. .  Plant J.. (2000);  24 693-701
  • 15 Kamphausen T., Fanghänel J., Neumann D., Schulz B., Rahfeld J. U.. Characterization of Arabidopsis thaliana AtFKBP42 that is membrane-bound and interacts with Hsp90.  Plant J.. (2002);  32 263-276
  • 16 Kang K. I., Meng X., Devin-Leclerc J., Bouhouche I., Chadli A., Cadepond F., Baulieu E. E., Catelli M. G.. The molecular chaperone Hsp90 can negatively regulate the activity of a glucocorticosteroid-dependent promoter.  Proc. Natl. Acad. Sci. USA. (1999);  96 1439-1444
  • 17 Kauschmann A., Jessop A., Koncz C., Szekeres M., Willmitzer L., Altmann T.. Genetic evidence for an essential role of brassinosteroids in plant development.  Plant J.. (1996);  5 701-713
  • 18 Knoblauch R., Garabedian M. J.. Role for Hsp90-associated cochaperone p23 in oestrogen receptor signal transduction.  Mol. Cell. Biol.. (1999);  19 3748-3759
  • 19 Kulaeva O. N., Burkhanova E. A., Fedina A. B., Khokhlova V. A., Bokebayeva G. A., Vorbrodt H. M., Adam G.. Effect of brassinosteroids on protein synthesis and plant-cell ultrastructure under stress conditions. Cutler, H. G., Yokota, T., and Adam, G., eds Brassinosteroids Chemistry, bioactivity and applications. Washington DC; ACS series (1991): 141-155
  • 20 Laskowski M. J., Williams M. E., Nusbaum H. C., Sussex I. M.. Formation of lateral root meristems is a two-stage process.  Development. (1995);  121 3303-3310
  • 21 Leshem Y.. Physiological effects of animal steroid and gonadotropic hormones on curd cuttings of Brassica oleracea. .  Phyton. (1967);  25 25-29
  • 22 Li J., Lease K. A., Tax F. E., Walker J. C.. BRS1, a serine carboxypeptidase, regulates BRI1 signaling in Arabidopsis thaliana. .  Proc. Natl. Acad. Sci. USA. (2001);  98 5916-5921
  • 23 Loeys M. E., Geuns J. M. C.. Cortisol and the adventitious root formation in mung bean seedlings.  Z. Pflanzenphysiol. Bd.. (1978);  87 211-224
  • 24 Mandava N. B.. Plant growth-promoting brassinosteroids.  Ann. Rev. Plant Physiol. Plant. Mol. Biol.. (1988);  39 35-39
  • 25 Morano K. A., Santoro N., Koch K. A., Thiele D. J.. A trans-activation domain in yeast heat shock transcription factor is essential for cell cycle progression during stress.  Mol. Cell. Biol.. (1999);  19 402-411
  • 26 Mussig C., Altmann T.. Physiology and molecular mode of action of brassinosteroids.  Plant Physiol. Biochem.. (1999);  37 363-372
  • 27 Mussig C., Altmann T.. Brassionsteroid signaling in plants.  Trends Endocrinol. Metab.. (2001);  12 398-402
  • 28 Nathan D. F., Lindquist S.. Mutational analysis of Hsp90 function: interactions with a steroid receptor and a protein kinase.  Mol. Cell. Biol.. (1995);  15 3917-3925
  • 29 Obermann W. M. J., Sondermann H., Russo A. A., Pavlevitch N. P., Hartl F. U.. In vivo function of HSP90 is dependent on ATP binding and ATP hydrolysis.  J. Cell. Biol.. (1998);  143 901-910
  • 30 Oh M. H., Ray W. K., Huber S. C., Asara J. M., Gage D. A., Clouse S. D.. Recombinant brassinosteroids insensitive 1 receptor-like kinase autophosphorylates on serine and threonine residues and phosphorylates a conserved motif in vitro.  Plant Physiol.. (2000);  124 751-766
  • 31 Owens-Grillo P., Stancato L. F., Hoffmann K., Pratt W. B., Krishna P.. Binding of immunophilins to the 90 kDA heat shock protein (Hsp90) via a tetratricopeptide repeat domain is a conserved protein interaction in plants.  Biochemistry. (1996);  35 15249-15255
  • 32 Paranetou B., Prodromou C., Roe S. M., Piper P. W., Pearl L. H.. ATP binding and hydrolysis are essential to the function of the Hsp90 molecular chaperone in vivo. .  EMBO J.. (1998);  17 4829-4836
  • 33 Pearl L. H., Prodromou C.. Structure and in vivo function of Hsp90.  Curr. Opin. Struct. Biol.. (2000);  10 46-51
  • 34 Pratt W. B., Toft D. O.. Steroid receptor interactions with heat shock protein and immunophilin chaperones.  Endocrin. Rev.. (1997);  18 306-360
  • 35 Prodromou C., Roe S. M., O'Brien R., Ladbury J. E., Piper P. W., Pearl L. H.. Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone.  Cell. (1997);  90 65-75
  • 36 Queitsch C., Sangster T. A., Lindquist S.. Hsp90 as a capacitor of phenotypic variation.  Nature. (2002);  417 618-624
  • 37 Reddy R. K., Kurek I., Silverstein A. M., Chinkers M., Breiman A., Krishna P.. High-molecular weight FK506-binding proteins are components of heat-shock protein 90 heterocomplexes in wheat germ lysate.  Plant Physiol.. (1998);  118 1395-1401
  • 38 Richter K., Buchner J.. Hsp90: chaperoning signal transduction.  J. Cell. Physiol.. (2001);  188 281-290
  • 39 Roddick J. G., Guan M.. Brassinosteroids and root development. Cutler, H. G., Yokota, T., and Adam, G. eds Brassinosteroids Chemistry, Bioactivity and Applications. Washington DC; ACS series (1991): 231-245
  • 40 Rutherford S. L., Lindquist S.. Hsp90 as a capacitor for morphological evolution.  Nature. (1998);  396 336-342
  • 41 Sasse J. M.. The case for brassinosteroids as endogenous plant hormones. Cutler, H. G., Yokota, T., and Adam, G., eds Brassinosteroids Chemistry, Bioactivity and Applications, ACS symposium series 474. Washington DC; American Chemical Society (1991): 158-166
  • 42 Schumacher K., Chory J.. Brassinosteroid signal transduction: still casting the actors.  Curr. Opin. Plant Biol.. (2000);  3 79-84
  • 43 Schneider C., Sepp-Lorenzino L., Nimmesgern E., Ouerfelli O., Danisherfsky S., Rosen N., Hartl F. U.. Pharmacologic shifting of a balance between protein refolding and degradation mediated by Hsp90.  Proc. Natl. Acad. Sci. USA. (1996);  93 14356-14541
  • 44 Sharma A., Matsuoka M., Tanaka H., Komatsu S.. Antisense inhibition of a BRI1 receptor reveals additional protein kinase signaling components downstream to the perception of brassinosteroids in rice.  FEBS Letters. (2001);  507 346-350
  • 45 Stancato L. F., Hutchinson K. A., Krishna P., Pratt W. B.. Animal and plant cell lysates share a conserved chaperone system that assembles the glucocorticoid receptor into a functional heterocomplex.  Biochemistry. (1996);  35 554-561
  • 46 Stebbins C. E., Russo A. A., Schneider C., Rosen N., Hartl F. U., Pavlevitch N. P.. Crystal structure of an Hsp90-geldanamycin complex: targeting of a protein chaperone by an antitumor agent.  Cell. (1997);  89 239-250
  • 47 Strizhov N., Abraham I., Okrisz L., Blicking S., Silberstein A., Schell J., Koncz C., Szabados L.. Differential expression of two P5 CS genes controlling proline accumulation during salt-stress requires ABA and is regulated by ABA1, ABI1 and AXR2 in Arabidopsis. .  Plant J.. (1997);  12 557-69
  • 48 Takatsuto S.. Brassinosteroids: distribution in plants, bioassays and microanalysis by gas chromatography-mass spectrometry.  J. Chromatogr.. (1994);  A658 3-15
  • 49 Wang Z. Y., Seto H., Fujioka S., Yoshida S., Chory J.. BRI1 is a critical component of a plasma-membrane receptor for plant steroids.  Nature,. (2001);  410 380-383
  • 50 Whitesell L., Mimnaugh E. G., De Costa B., Myers C. E., Neckers L. M.. Inhibition of heat shock protein Hsp90-pp60 heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation.  Proc. Natl. Acad. Sci. USA. (1994);  91 8324-8328
  • 51 Yamamoto C., Ihara Y., Wu X., Noguchi T., Fujioka S., Takatsuto S., Qshikari M., Kitano H., Matsuoka M.. Loss of function of a rice brassinosteroids insensitive 1 homolog prevents internode elongation and bending of the lamina joint.  Plant Cell. (2000);  12 1591-1606

G. N. Amzallag

The Judea Center for Research and Development

Carmel 90404

Israel

Email: nissamz@bgumail.bgu.ac.il

Section Editor: U. Lüttge