Plant Biol (Stuttg) 2003; 5(2): 125-136
DOI: 10.1055/s-2003-40726
Review Article

Georg Thieme Verlag Stuttgart · New York

Plant Sphingolipids Today - Are They Still Enigmatic?

S. Spassieva 1 , J. Hille 1
  • 1Department Molecular Biology of Plants, Research School GBB, University of Groningen, The Netherlands
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
21. Juli 2003 (online)

Abstract

Sphingolipids are a diverse group of lipids found in all eukaryotes and some bacteria, consisting of a hydrophobic ceramide and a hydrophilic head group. We have summarised the contemporary understanding of the structure of plant sphingolipids with an emphasis on glucosylceramides and inositolphosphorylceramides. Plant glucosylceramides are important structural components of plasma and vacuole membranes. Inositolphosphorylceramides have been identified as moieties of the glycosylphosphorylinositol (GPI) anchors of plant proteins targeted to the plasma membrane. In the last few years, progress has been made in the cloning of plant genes coding for enzymes involved in sphingolipid metabolism. As found in yeast and mammals, the plant sphingolipid pathway is a potential generator of powerful cell signals. The role of plant sphingolipid metabolites in programmed cell death and calcium influx is discussed.

References

  • 1 Abbas H., Tanaka T., Duke S., Porter J., Wray E., Hodges L., Sessions A., Wang E., Merrill A. H., Riley R.. Fumonisin- and AAL-toxin-induced disruption of sphingolipid metabolism with accumulation of free sphingoid bases.  Plant Physiol.. (1994);  106 1085-1093
  • 2 Asai T., Stone J. M., Heard J. E., Kovtun Y., Yorgey P., Sheen J., Ausubel F. M.. Fumonisin B1-induced cell death in Arabidopsis protoplasts requires jasmonate-, ethylene-, and salicylate-dependent signaling pathways.  Plant Cell. (2000);  12 1823-1836
  • 3 Boggs J. M.. Lipid intermolecular hydrogen bonding: influence on structural organization and membrane function.  Biochim. Biophys. Acta. (1987);  906 353-404
  • 4 Bohn M., Heinz E., Luthje S.. Lipid composition and fluidity of plasma membranes isolated from corn (Zea mays L.) roots.  Arch. Biochem. Biophys.. (2001);  387 35-40
  • 5 Borner G. H. H., Sherrier D. J., Stevens T. J., Arkin I. T., Dupree P.. Prediction of glycosylphosphatidylinositol-anchored proteins in Arabidopsis. A Genomic Analysis.  Plant Physiol.. (2002);  129 486-499
  • 6 Brandwagt B. F., Mesbah L. A., Takken F. L., Laurent P. L., Kneppers T. J., Hille J., Nijkamp H. J.. A longevity assurance gene homolog of tomato mediates resistance to Alternaria alternata f. sp. lycopersici toxins and fumonisin B1.  Proc. Natl. Acad. Sci. USA. (2000);  97 4961-4966
  • 7 Brodersen P., Petersen M., Pike H. M., Olszak B., Skov S., Odum N., Jorgensen L. B., Brown R. E., Mundy J.. Knockout of Arabidopsis accelerated-cell-death11 encoding a sphingosine transfer protein causes activation of programmed cell death and defense.  Genes Dev.. (2002);  16 490-502
  • 8 Cahoon E. B., Lynch D. V.. Analysis of glucocerebrosides of rye (Secale cereale L. cv Puma) leaf and plasma membrane.  Plant Physiol.. (1991);  95 58-68
  • 9 Cantatore J. L., Murphy S. M., Lynch D. V.. Compartmentation and topology of glucosylceramide synthesis.  Biochem. Soc. Trans.. (2000);  28 748-750
  • 10 Carter H. E., Hendry R. A., Nojima S., Stanacev N. Z., Ohno K.. Biochemistry of the sphingolipids XIII. Determination of the structure of cerebrosides from wheat flour.  J. Biol. Chem.. (1961);  236 1912-1916
  • 11 Carter H. E., Jonson P., Weber E. J.. Glycolipids.  Ann. Rev. Biochem.. (1965);  34 109-142
  • 12 Carter H. E., Koob J. L.. Sphingolipids in bean leaves (Phaseolus vulgaris). .  J. Lipid Res.. (1969);  10 363-369
  • 13 Crowther G. J., Lynch D. V.. Characterization of sphinganine kinase activity in corn shoot microsomes.  Arch. Biochem. Biophys.. (1997);  337 284-290
  • 14 Darjania L., Ichise N., Ichikawa S., Okamoto T., Okuyama H., Thompson Jr G. A.. Dynamic turnover of arabinogalactan proteins in cultured Arabidopsis cells.  Plant Physiol. Biochem.. (2002);  40 69-79
  • 15 de Nobel H., van Den E. H., Klis F. M.. Cell wall maintenance in fungi.  Trends Microbiol.. (2000);  8 344-345
  • 16 Fujino Y., Ito S.. Existance of ceramide in alfalfa leaves.  Biochem. Biophys. Acta. (1971);  231 242-243
  • 17 Fujino Y., Ohnishi M.. Sphingolipids in wheat grain.  J. Cereal Sci.. (1983);  1 159-168
  • 18 Fujino Y., Ohnishi M., Ito S.. Further studies on sphingolipids in wheat grain.  Lipids. (1985);  20 337-342
  • 19 Gilchrist D., Wang H., Bostock R.. Sphingosine-related mycotoxins in plant and animal diseases.  Can. J. Bot.. (1995);  73 (Suppl. 1) S459-S467
  • 20 Guillas I., Kirchman P. A., Chuard R., Pfefferli M., Jiang J. C., Jazwinski S. M., Conzelmann A.. C26-CoA-dependent ceramide synthesis of Saccharomyces cerevisiae is operated by Lag1 p and Lac1 p.  EMBO J.. (2001);  20 2655-2665
  • 21 Hakomori S.. Chemistry of glycosphingolipids. Hanahan, D. J., ed. Handbook of lipid research. New York; Plemun Press (1983): 1-165
  • 22 Hanada K., Hara T., Nishijima M.. Purification of the serine palmitoyltransferase complex responsible for sphingoid base synthesis by using affinity peptide chromatography techniques.  J. Biol. Chem.. (2000);  275 8409-8415
  • 23 Hanada K., Hara T., Nishijima M., Kuge O., Dickson R. C., Nagiec M. M.. A mammalian homolog of the yeast LCB1 encodes a component of serine palmitoyltransferase, the enzyme catalyzing the first step in sphingolipid synthesis.  J. Biol. Chem.. (1997);  272 32108-32114
  • 24 Hannun Y. A., Luberto C., Argraves K. M.. Enzymes of sphingolipid metabolism: from modular to integrative signaling.  Biochemistry. (2001);  40 4893-4903
  • 25 Hannun Y. A., Obeid L. M.. The Ceramide-centric universe of lipid-mediated cell regulation: Stress encounters of the lipid kind.  J. Biol. Chem.. (2002);  277 25847-25850
  • 26 Hsieh T. C., Kaul K., Laine R. A., Lester R. L.. Structure of a major glycophosphoceramide from tobacco leaves, PSL-I: 2- deoxy-2-acetamido-D-glucopyranosyl(alpha1 leads to 4)-D- glucuronopyranosyl(alpha1 leads to 2)myoinositol-1-O-phosphoceramide.  Biochemistry. (1978);  17 3575-3581
  • 27 Hsieh T. C., Lester R. L., Laine R. A.. Glycophosphoceramides from plants. Purification and characterization of a novel tetrasaccharide derived from tobacco leaf glycolipids.  J. Biol. Chem.. (1981);  256 7747-7755
  • 28 Imai H., Ohnishi M., Hotsubo K., Kojima M., Ito S.. Sphingoid base composition of cerebrosides from plant leaves.  Biosci. Biotechnol. Biochem.. (1997);  61 351-353
  • 29 Imai H., Yamamoto K., Shibahara A., Miyatani S., Nakayama T.. Determining double-bond positions in monoenoic 2-hydroxy fatty acids of glucosylceramides by gas chromatography-mass spectrometry.  Lipids. (2000);  35 233-236
  • 30 Jenkins G. M., Richards A., Wahl T., Mao C., Obeid L., Hannun Y.. Involvement of yeast sphingolipids in the heat stress response of Saccharomyces cerevisiae. .  J. Biol. Chem.. (1997);  272 32566-32572
  • 31 Kaul K., Lester R. L.. Characterization of inositol-containing phosphosphingolipids from tobacco leaves.  Plant Physiol.. (1975);  55 120-129
  • 32 Kawaguchi M., Imai H., Naoe M., Yasui Y., Ohnishi M.. Cerebrosides in grapevine leaves: distinct composition of sphingoid bases among the grapevine species having different tolerances to freezing temperature.  Biosci. Biotechnol. Biochem.. (2000);  64 1271-1273
  • 33 Leipelt M., Warnecke D., Zahringer U., Ott C., Muller F., Hube B., Heinz E.. Glucosylceramide synthases, a gene family responsible for the biosynthesis of glucosphingolipids in animals, plants, and fungi.  J. Biol. Chem.. (2001);  276 33621-33629
  • 34 Lester R. L., Dickson R. C.. Sphingolipids with inositolphosphate-containing head groups.  Adv. Lipid Res.. (1993);  26 253-274
  • 35 Lynch D. V.. Sphingolipids. Moore, T. S., ed. Lipid Metabolism in Plants. Boca Raton; CRC Press (1993 a): 285-308
  • 36 Lynch D. V.. Enzymes of sphingolipid metabolism in plants. Merrill, A. H., Jr. and Hannun, Y., eds. Sphingolipid Metabolism. San Diego; Academic Press (2000): 130-149
  • 37 Lynch D. V., Caffrey M., Hogan J. L., Steponkus P. L.. Calorimetric and x-ray diffraction studies of rye glucocerebroside mesomorphism.  Biophys. J.. (1992);  61 1289-1300
  • 38 Lynch D. V., Cahoon E. B., Fairfield S. R., Tannishtha. Glycosphingolipids of plant membranes. Quinn, P. J. and Harwood, J. L., eds. Physical Properties of Membrane Lipids. London; Portland Press (1990): 47-52
  • 39 Lynch D. V., Fairfield S. R.. Sphingolipid long-chain base synthesis in plants.  Plant Physiol.. (1993);  103 1421-1429
  • 40 Lynch D. V., Phinney A. J.. The transbilayer distribution of glucosylceramide in plant plasma membrane. Kader, J. C. and Mazliak, P., eds. Plant Lipid Metabolism. Dordrecht; Kluwer Academic Publishers (1995): 239-241
  • 41 Lynch D. V., Spence R. A., Theiling K. M., Thomas K. W., Lee M. T.. Enzymatic reactions involved in ceramide metabolism. Murata, N. and Somerville, C. R., eds. Biochemistry and Molecular Biology of Membrane and Storage Lipids in Plants. Rockville; ASPP (1993 b): 183-190
  • 42 Lynch D. V., Steponkus P. L.. Plasma membrane lipid alterations associated with cold acclimation of winter rye seedlings (Secale cereale L. cv Puma).  Plant Physiol.. (1987 a);  83 761-767
  • 43 Lynch D. V., Steponkus P. L.. Thermotropic phase behavior of glucocerebrosides from rye leaves.  Cryobiology. (1987 b);  24 555-556
  • 44 Mao C., Xu R., Bielawska A., Obeid L. M.. Cloning of an alkaline ceramidase from Saccharomyces cerevisiae. An enzyme with reverse (CoA-independent) ceramide synthase activity.  J. Biol. Chem.. (2000 a);  275 6876-6884
  • 45 Mao C., Xu R., Bielawska A., Szulc Z. M., Obeid L. M.. Cloning and characterization of a Saccharomyces cerevisiae alkaline ceramidase with specificity for dihydroceramide.  J. Biol. Chem.. (2000 b);  275 31369-31378
  • 46 Mao C., Xu R., Szulc Z. M., Bielawska A., Galadari S. H., Obeid L. M.. Cloning and characterization of a novel human alkaline ceramidase. A mammalian enzyme that hydrolyzes phytoceramide.  J. Biol. Chem.. (2001);  276 26577-26588
  • 47 Merrill Jr. A. H.. De novo sphingolipid biosynthesis: a necessary, but dangerous pathway.  J. Biol. Chem.. (2002);  277 25843-25846
  • 48 Merrill A. H., Jr., Schmelz E. M., Wang E., Dillehay D. L., Rice L. G., Meredith F., Riley R. T.. Importance of sphingolipids and inhibitors of sphingolipid metabolism as components of animal diets.  J. Nutr.. (1997);  127 830-833
  • 49 Merrill A. H., Jr., van Echten G., Wang E., Sandhoff K.. Fumonisin B1 inhibits sphingosine (sphinganine) N-acyltransferase and de novo sphingolipid biosynthesis in cultured neurons in situ.  J. Biol. Chem.. (1993);  268 27299-27306
  • 50 Morita N., Nakazato H., Okuyama H., Kim Y., Thompson Jr. G. A.. Evidence for a glycosylinositolphospholipid-anchored alkaline phosphatase in the aquatic plant Spirodela oligorrhiza. .  Biochim. Biophys. Acta. (1996);  1290 53-62
  • 51 Muniz M., Riezman H.. Intracellular transport of GPI-anchored proteins.  EMBO J.. (2000);  19 10-15
  • 52 Nagiec M. M., Baltisberger J. A., Wells G. B., Lester R. L., Dickson R. C.. The LCB2 gene of Saccharomyces and the related LCB1 gene encode subunits of serine palmitoyltransferase, the initial enzyme in sphingolipid synthesis.  Proc. Natl. Acad. Sci. USA. (1994);  91 7899-7902
  • 53 Ng C. K., Carr K., McAinsh M. R., Powell B., Hetherington A. M.. Drought-induced guard cell signal transduction involves sphingosine-1-phosphate.  Nature. (2001);  410 596-599
  • 54 Ng C. K. Y., Hetherington A. M.. Sphingolipid-mediated signalling in Plants.  Ann. Bot.. (2001);  88 957-965
  • 55 Nishiura H., Tamura K., Morimoto Y., Imai H.. Characterization of sphingolipid long-chain base kinase in Arabidopsis thaliana. .  Biochem. Soc. Trans.. (2000);  28 747-748
  • 56 Norberg P., Mansson J. E., Liljenberg C.. Characterization of glucosylceramide from plasma membranes of plant root cells.  Biochim. Biophys. Acta. (1991);  1066 257-260
  • 57 Norberg P., Nilsson R., Nyiredy S., Liljenberg C.. Glucosylceramides of oat root plasma membranes - physicochemical behaviour in natural and in model systems.  Biochim. Biophys. Acta. (1996);  1299 80-86
  • 58 Ohnishi M., Fujino Y.. Chemical composition of ceramide and cerebroside in Azuki bean seeds.  Agric. Biol. Chem.. (1981);  45 1283-1284
  • 59 Ohnishi M., Fujino Y.. Sphingolipids in immature and mature soybeans.  Lipids. (1982);  17 803-810
  • 60 Ohnishi M., Imai H., Kojima M., Yoshida S., Murata N., Fujino Y., Ito S.. Separation of cerebroside species in plants by reversed-phase HPLC and their phase transition temperature.  Proc. ISF-JOCS World Congress II. (1988): 930-935
  • 61 Ohnishi M., Ito S., Fujino Y.. Characterization of sphingolipids in spinach leaves.  Biochem. Biophys. Acta. (1983);  752 416-422
  • 62 Ohnishi M., Ito S., Fujino Y.. Structural characterization of sphingolipids in leafy stems of rice.  Agric. Biol. Chem.. (1985);  49 3327-3329
  • 63 Oxley D., Bacic A.. Structure of the glycosylphosphatidylinositol anchor of an arabinogalactan protein from Pyrus communis suspension-cultured cells.  Proc. Natl. Acad. Sci. USA. (1999);  96 14246-14251
  • 64 Peskan T., Westermann M., Oelmuller R.. Identification of low-density Triton X-100-insoluble plasma membrane microdomains in higher plants.  Eur. J. Biochem.. (2000);  267 6989-6995
  • 65 Poincelot R. P.. Isolation and lipid composition of spinach chloroplast envelop membranes.  Arch. Biochem. Biophys.. (1973);  159 134-142
  • 66 Reggiori F., Canivenc-Gansel E., Conzelmann A.. Lipid remodelling leads to the introduction and exchange of defined ceramides on GPI proteins in the ER and Golgi of Saccharomyces cerevisiae. .  EMBO J.. (1997);  16 3506-3518
  • 67 Reggiori F., Conzelmann A.. Biosynthesis of inositol phosphoceramides and remodelling of glycosylphosphatidylinositol anchors in Saccharomyces cerevisiae are mediated by different enzymes.  J. Biol. Chem.. (1998);  273 30550-30559
  • 68 Rochester C. P., Kjellbom P., Andersson B., Larsson C.. Lipid composition of plasma membranes isolated from light-grown barley (Hordeum vulgare) leaves: identification of cerebroside as a major component.  Arch. Biochem. Biophys.. (1987);  255 385-391
  • 69 Sandstrom R. P., Cleland R. E.. Comparison of the lipid composition of oat root and coleoptile plasma membranes: lack of short-term change in response to auxin.  Plant Physiol.. (1989);  90 1207-1213
  • 70 Schmelz E. M., Roberts P. C., Kustin E. M., Lemonnier L. A., Sullards M. C., Dillehay D. L., Merrill Jr. A. H.. Modulation of intracellular β-catenin localization and intestinal tumorigenesis in vivo and in vitro by sphingolipids.  Cancer Res.. (2001);  61 6723-6729
  • 71 Schorling S., Vallee B., Barz W. P., Riezman H., Oesterhelt D.. Lag1 p and Lac1 p are essential for the Acyl-CoA-dependent ceramide synthase reaction in Saccharomyces cerevisae. .  Mol. Biol. Cell. (2001);  12 3417-3427
  • 72 Simons K., Ikonen E.. Functional rafts in cell membranes.  Nature. (1997);  387 569-572
  • 73 Spassieva S. D., Markham J. E., Hille J.. The plant disease resistance gene Asc-1 prevents disruption of sphingolipid metabolism during AAL-toxin induced programmed cell death.  Plant J.. (2002);  32 561-572
  • 74 Sperling P., Blume A., Zahringer U., Heinz E.. Further characterization of Delta(8)-sphingolipid desaturases from higher plants.  Biochem. Soc. Trans.. (2000);  28 638-641
  • 75 Sperling P., Libisch B., Zahringer U., Napier J. A., Heinz E.. Functional identification of a delta8-sphingolipid desaturase from Borago officinalis. .  Arch. Biochem. Biophys.. (2001 a);  388 293-298
  • 76 Sperling P., Ternes P., Moll H., Franke S., Zahringer U., Heinz E.. Functional characterization of sphingolipid C4-hydroxylase genes from Arabidopsis thaliana. .  FEBS Lett.. (2001 b);  494 90-94
  • 77 Sperling P., Zahringer U., Heinz E.. A sphingolipid desaturase from higher plants. Identification of a new cytochrome b5 fusion protein.  J. Biol. Chem.. (1998);  273 28590-28596
  • 78 Spiegel S., Milstien S.. Sphingosine 1-phosphate, a key cell signaling molecule.  J. Biol. Chem.. (2002);  277 25851-25854
  • 79 Steponkus P. L., Lynch D. V.. Freeze/thaw-induced destabilization of the plasma membrane and the effects of cold acclimation.  J. Bioenerg. Biomembr.. (1989);  21 21-41
  • 80 Sugawara T., Miyazawa T.. Separation and determination of glycolipids from edible plant sources by high-performance liquid chromatography and evaporative light-scattering detection.  Lipids. (1999);  34 1231-1237
  • 81 Sullards M. C., Lynch D. V., Merrill Jr. A. H., Adams J.. Structure determination of soybean and wheat glucosylceramides by tandem mass spectrometry.  J. Mass Spectrom.. (2000);  35 347-353
  • 82 Takos A. M., Dry I. B., Soole K. L.. Detection of glycosyl-phosphatidylinositol-anchored proteins on the surface of Nicotiana tabacum protoplasts.  FEBS Lett.. (1997);  405 1-4
  • 83 Takos A. M., Dry I. B., Soole K. L.. Glycosyl-phosphatidylinositol-anchor addition signals are processed in Nicotiana tabacum. .  Plant J.. (2000);  21 43-52
  • 84 Tamura K., Mitsuhashi N., Hara-Nishimura I., Imai H.. Characterization of an Arabidopsis cDNA encoding a subunit of serine palmitoyltransferase, the initial enzyme in sphingolipid biosynthesis.  Plant Cell Physiol.. (2001);  42 1274-1281
  • 85 Tamura K., Nishiura H., Mori J., Imai H.. Cloning and characterization of a cDNA encoding serine palmitoyltransferase in Arabidopsis thaliana. .  Biochem. Soc. Trans.. (2000);  28 745-747
  • 86 Tavernier E., Le Quoc D., Le Quoc K.. Lipid composition of the vacuolar membrane of Acer pseudoplatanus cultured cells.  Biochim. Biophys. Acta. (1993);  1167 242-247
  • 87 Ternes P., Franke S., Zahringer U., Sperling P., Heinz E.. Identification and characterization of a sphingolipid delta4-desaturase family.  J. Biol. Chem.. (2002);  227 25512-25518
  • 88 Thudichum J. L. W.. Reports of the medical officer of privy council and local government board. N. Ser. III. (1874): 113
  • 89 Tolleson W. H., Couch L. H., Melchior W. B., Jr., Jenkins G. R., Muskhelishvili M., Muskhelishvili L., McGarrity L. J., Domon O., Morris S. M., Howard P. C.. Fumonisin B1 induces apoptosis in cultured human keratinocytes through sphinganine accumulation and ceramide depletion.  Int. J. Oncol.. (1999);  14 833-843
  • 90 Uemura M., Steponkus P. L.. A contrast of the plasma membrane lipid composition of oat and rye leaves in relation to freezing tolerance.  Plant Physiol.. (1994);  104 479-496
  • 91 Venkataraman K., Riebeling C., Bodennec J., Riezman H., Allegood J. C., Sullards M. C., Merrill A. H., Jr., Futerman A. H.. Upstream of growth and differentiation factor 1 (uog1), a mammalian homolog of the yeast longevity assurance gene 1 (LAG1), regulates N-Stearoyl-sphinganine (C18-(Dihydro)ceramide) synthesis in a Fumonisin B1-independent manner in mammalian cells.  J. Biol. Chem.. (2002);  277 35642-35649
  • 92 Vesper H., Schmelz E. M., Nikolova-Karakashian M. N., Dillehay D. L., Lynch D. V., Merrill Jr. A. H.. Sphingolipids in food and the emerging importance of sphingolipids to nutrition.  J. Nutr.. (1999);  129 1239-1250
  • 93 Wang E., Li J., Bostock R., Gilchrist D.. Apoptosis: a functional paradigm for programmed plant cell death induced by a host-selective phytotoxin and invoked during development.  Plant Cell. (1996);  8 375-391
  • 94 Wang E., Norred W. P., Bacon C. W., Riley R. T., Merrill Jr. A. H.. Inhibition of sphingolipid biosynthesis by fumonisins. Implications for diseases associated with Fusarium moniliforme. .  J. Biol. Chem.. (1991);  266 14486-14490
  • 95 Weiss B., Stoffel W.. Human and murine serine-palmitoyl-CoA transferase - cloning, expression and characterization of the key enzyme in sphingolipid synthesis.  Eur. J. Biochem.. (1997);  249 239-247
  • 96 Witsenboer H., Schaik C. E., Bino R. J., Loffler H. J. M., Nijkamp H. J., Hille J.. Effects of Alternaria alternata f.sp. lycopersici toxins at different levels of tomato plant cell development.  Plant Science. (1988);  56 253-260
  • 97 Xu X., Bittman R., Duportail G., Heissler D., Vilcheze C., London E.. Effect of the structure of natural sterols and sphingolipids on the formation of ordered sphingolipid/sterol domains (rafts). Comparison of cholesterol to plant, fungal, and disease-associated sterols and comparison of sphingomyelin, cerebrosides, and ceramide.  J. Biol. Chem.. (2001);  276 33540-33546
  • 98 Yoshida S., Uemura M.. Lipid composition of plasma membranes and tonoplasts isolated from etiolated seedlings of mung bean (Vigna radiata L.).  Plant Physiol.. (1986);  82 807-812
  • 99 Yoshida S., Washio K., Kenrick J., Orr G.. Thermotropic properties of lipids extracted from plasma membrane and tonoplast isolated from chilling-sensitive mung bean (Vigna radiata [L.] Wilczek).  Plant Cell Physiol.. (1988);  29 1411-1416

S. Spassieva

Dept. Molecular Biology of Plants
Research School GBB
University of Groningen

Kerklaan 30

9751 NN Haren

The Netherlands

eMail: s.d.spassieva@biol.rug.nl

Section Editor: L. A. C. J. Voesenek