Plant Biol (Stuttg) 2003; 5(2): 137-142
DOI: 10.1055/s-2003-40730
Original Paper

Georg Thieme Verlag Stuttgart · New York

Size-Dependent Variation of Carbon and Nitrogen Isotope Abundances in Epiphytic Bromeliads

P. Hietz 1 , W. Wanek 2
  • 1Institute of Botany, BOKU University of Natural Resources and Applied Life Sciences, Vienna, Austria
  • 2Institute of Ecology and Conservation Biology, University of Vienna, Vienna, Austria
Further Information

Publication History

Publication Date:
21 July 2003 (online)

Abstract

While atmospheric species of bromeliads have narrow leaves, densely covered with water-absorbing trichomes throughout their life cycles, many tank bromeliads with broad leaves, forming phytotelmata, go through an atmospheric juvenile phase. The effect of the different habits and the phase change in tank-forming bromeliads on water and nutrient relations was investigated by analysing the relationship between plant size, C/N ratios and the natural abundance of 13C and 15N in five epiphytic bromeliad species or morphospecies of a humid montane forest in Xalapa, Mexico. The atmospheric species Tillandsia juncea and T. butzii exhibited full crassulacean acid metabolism, with δ13C values (mean - 15.3 ‰ and - 14.7 ‰, respectively) independent of size. In Tillandsia species with C3 photosynthesis, δ13C decreased with increasing plant size, indicating stronger drought stress in juveniles. The increase of the C/N ratio with size suggests that, at least in heteroblastic bromeliads, the availability of water is more limiting during early growth, and that limitations of nitrogen supply become more important later on, when water stored in the tank helps to bridge dry periods, reducing water shortage. δ15N values of the two atmospheric species were very negative (- 12.6 ‰ and - 12.2 ‰, respectively) and did not change with plant size. Tank-forming bromeliads had less negative δ15N values (c - 6 ‰), and, in species with atmospheric juveniles and tank-forming adults, δ15N values increased significantly with plant size. These differences do not appear to be an effect of the isotopic composition of N sources, but rather reflect N availability and limitation and stress-induced changes in 15N discrimination.

References

  • 2 Adams W. W., Martin C. E.. Physiological consequences of changes in life form of the Mexican epiphyte Tillandsia deppeana (Bromeliaceae).  Oecologia. (1986 a);  70 298-304
  • 1 Adams W. W., Martin C. E.. Morphological changes accompanying the transition from juvenile (atmospheric) to adult (tank) forms in the Mexican epiphyte Tillandsia deppeana (Bromeliaceae).  American Journal of Botany. (1986 b);  73 1207-1214
  • 3 Benzing D. H.. Foliar permeability and the absorption of minerals and organic nitrogen by certain tank bromeliads.  Botanical Gazette. (1970);  131 23-31
  • 4 Benzing D. H.. Vascular epiphytes. General biology and related biota. Cambridge; Cambridge University Press (1990)
  • 5 Benzing D. H., Henderson K., Kessel B., Solak J.. The absorptive capacities of bromeliad trichomes.  American Journal of Botany. (1976);  63 1009-1014
  • 6 Bergstrom D. M., Tweedie C. E.. A conceptual model for integrative studies of epiphytes: nitrogen utilisation, a case study.  Australian Journal of Botany. (1998);  46 273-280
  • 7 Clark K. L., Nadkarni N. M., Schaefer D., Gholz H. L.. Atmospheric deposition and net retention of ions by the canopy in a tropical montane forest, Monteverde, Costa Rica.  Journal of Tropical Ecology. (1998);  14 27-45
  • 8 Cornell S., Rendell A., Jickells T.. Atmospheric inputs of dissolved organic nitrogen to the oceans.  Nature. (1995);  376 243-246
  • 9 Evans R. D.. Physiological mechanisms influencing plant nitrogen isotope composition.  Trends in Plant Science. (2001);  6 121-126
  • 10 Evans R. D., Bloom A. J., Sukarpanna S. S., Ehleringer J. R.. Nitrogen isotope composition of tomato (Lycopersicon esculentum Mill. cv. T-5) grown under ammonium or nitrate nutrition.  Plant, Cell and Environment. (1996);  19 1317-1323
  • 11 Farquhar G. D., Ehleringer J. R., Hubick K. T.. Carbon isotope discrimination and photosynthesis.  Annual Review of Plant Physiology and Plant Molecular Biology. (1989);  40 503-537
  • 12 Freyer H. D.. Seasonal variation of 15N/14N ratios in atmospheric nitrate species.  Tellus. (1991);  43B 44
  • 13 Handley L. L., Raven J. A.. The use of natural abundance of nitrogen isotopes in plant physiology and ecology.  Plant, Cell and Environment. (1992);  15 965-985
  • 14 Handley L. L., Robinson D., Forster B. P., Ellis R. P., Serimgeour C. M., Gordon D. C., Nevo E., Raven J. A.. Shoot δ15N correlates with genotype and salt stress in barley.  Planta. (1997);  201 100-102
  • 15 Heaton T. H. E.. Isotopic studies of nitrogen pollution in the hydrosphere and atmosphere: a review.  Chemical Geology. (1986);  59 87-102
  • 16 Heaton T. H. E.. 15N/14N ratios of nitrate and ammonium in rain at Pretoria, South Africa.  Atmospheric Environment. (1987);  21 843-852
  • 17 Hietz P.. Population dynamics of epiphytes in a Mexican humid montane forest.  Journal of Ecology. (1997);  85 767-775
  • 18 Hietz P., Hietz-Seifert U.. Intra- and interspecific relations within an epiphyte community in a Mexican humid montane forest.  Selbyana. (1995);  16 135-140
  • 19 Hietz P., Wanek W., Popp M.. Stable isotopic composition of carbon and nitrogen and nitrogen content in vascular epiphytes along an altitudinal transect.  Plant, Cell and Environment. (1999);  22 1435-1443
  • 20 Hietz P., Wanek W., Wania R., Nadkarni N. M.. Nitrogen-15 natural abundance in a montane cloud forest canopy as an indicator of nitrogen cycling and epiphyte nutrition.  Oecologia. (2002);  131 350-355
  • 21 Holdridge L. R.. Life zone ecology. San José; Tropical Science Center (1967)
  • 22 Kendall C.. Tracing nitrogen sources and cycling in catchments. Kendall, C. and McDonnell, J. J., eds. Isotope tracers in catchment hydrology. Amsterdam; Elsevier (1998): 519-576
  • 23 Kluge M., Ting J. P.. Crassulacean acid metabolism: Analysis of an ecological adaptation. Ecological Studies 30. Heidelberg; Springer (1978)
  • 24 Martin C. E.. Physiological ecology of the Bromeliaceae.  The Botanical Review. (1994);  60 1-82
  • 25 Martinelli L. A., Piccolo M. C., Townsend A. R., Vitousek P. M., Cuevas E., Mcdowell W., Robertson G. P., Santos O. C., Treseder K.. Nitrogen stable isotopic composition of leaves and soil: Tropical versus temperate forests.  Biogeochemistry. (1999);  46 45-65
  • 26 Maxwell K., von Caemmerer S., Evans J. R.. Is a low internal conductance to CO2 diffusion a consequence of succulence in plants with crassulacean acid metabolism?.  Australian Journal of Plant Physiology. (1997);  24 777-780
  • 27 McKee K. L., Feller I. C., Popp M., Wanek W.. Mangrove isotopic (δ13C and δ15N) fractionation across a nitrogen vs. phosphorus limitation gradient.  Ecology. (2002);  83 1065-1075
  • 28 Nadkarni N. M., Matelson T. J.. Biomass and nutrient dynamics of epiphytic litterfall in a neotropical montane forest, Costa Rica.  Biotropica. (1992);  24 24-30
  • 29 Osmond C. B., Bender M. M., Burris R. H.. Pathways of CO2 fixation in the CAM plant Kalanchoe daigremontiana. III Correlation with δ13C value during growth and water stress.  Australian Journal of Plant Physiology. (1976);  3 787-799
  • 30 Robinson D.. δ15N as an integrator of the nitrogen cycle.  Trends in Ecology and Evolution. (2001);  16 153-162
  • 31 Russell K. M., Galloway J. N., Macko S. A., Moody J. L., Scudlark J. R.. Sources of nitrogen in wet deposition to the Chesapeake bay region.  Atmospheric Environment. (1998);  32 2453-2465
  • 32 Schmidt G., Zotz G.. Ecophysiological consequences of differences in plant size: in situ carbon gain and water relations of the epiphytic bromeliad, Vriesea sanguinolenta. .  Plant, Cell and Environment. (2001);  24 101-111
  • 33 Stewart G. R., Schmidt S., Handley L. L., Turnbull M. H., Erskine P. D., Joly C. A.. 15N natural abundance of vascular rainforest epiphytes: implications for nitrogen source and acquisition.  Plant, Cell and Environment. (1995);  18 85-90
  • 34 Vitousek P. M., Field C. B., Matson P. A.. Variation in foliar δ13C in Hawaiian Meterosideros polymorpha: a case of internal resistance?.  Oecologia. (1990);  84 362-370
  • 35 Wania R., Hietz P., Wanek W.. Natural 15N abundance of epiphytes depends on the position within the forest canopy: source signals and isotope fractionation.  Plant, Cell and Environment. (2002);  25 581-589
  • 36 Williams-Linera G.. Phenology of deciduous and broadleaved-evergreen tree species in a Mexican tropical lower montane forest.  Global Ecology and Biogeography Letters. (1997);  6 115-127
  • 37 Yeatman S. G., Spokes L. J., Dennis P. F., Jickells T. D.. Can the study of nitrogen isotopic composition in size-segragated aerosol nitrate and ammonium be used to investigate atmospheric processing mechanisms?.  Atmospheric Environment. (2001);  35 1337-1345
  • 38 Yoneyama T.. Characterization of natural 15N abundance in soils. Boutton, T. W. and Yamasaki, S., eds. Mass spectrometry of soils. New York; Marcel Dekker (1996): 205-223
  • 39 Zotz G.. Photosynthetic capacity increases with plant size.  Botanica Acta. (1997);  110 306-308
  • 40 Zotz G., Andrade J. L.. Water relations of two co-occurring epiphytic bromeliads.  Journal of Plant Physiology. (1998);  152 545-554
  • 41 Zotz G., Hietz P., Schmidt G.. Small plants, large plants: the importance of plant size for the physiological ecology of vascular epiphytes.  Journal of Experimental Botany. (2001);  52 2051-2056
  • 42 Zotz G., Thomas V.. How much water is in the tank? Model calculations for two epiphytic bromeliads.  Annals of Botany. (1999);  83 183-192
  • 43 Zotz G., Ziegler H.. Size-related differences in carbon isotope discrimination in the epiphytic orchid, Dimerandra emarginata. .  Naturwissenschaften. (1999);  86 39-40

P. Hietz

Institute of Botany BOKU University of Natural Resources and Applied Life Sciences

Gregor-Mendel-Straße 33

1180 Vienna

Austria

Email: hietz@edv1.boku.ac.at

Section Editor: H. Rennenberg