Subscribe to RSS
DOI: 10.1055/s-2003-40799
Georg Thieme Verlag Stuttgart · New York
Whole Plant Regulation of Sulfur Nutrition of Deciduous Trees
Influences of the EnvironmentPublication History
Publication Date:
22 July 2003 (online)
![](https://www.thieme-connect.de/media/plantbiology/200303/lookinside/thumbnails/10.1055-s-2003-40799-1.jpg)
Abstract
The current view of sulfur nutrition is based on the source-to-sink relationship of carbohydrates. SO4 2- reduction is thought to occur mainly in leaves. Surplus reduced sulfur must be transported out of the leaves, loaded into the phloem and transported to other tissues, in particular tissues assumed to be sink organs. However, it has not been proved that tissues which are sinks for carbohydrates are also sink organs for reduced sulfur. It is evident that sinks must communicate with sources, and vice versa, to signal demand and to transport the surplus of reduced sulfur that is produced. The demand-driven control model of sulfur nutrition proposes that the tripeptide glutathione is the signal which regulates S nutrition of the whole plant at the level of SO4 2- uptake. Acclimatization to environmental changes has been shown to result in several changes in S nutrition of deciduous trees: (i) Drought stress diminished SO4 2- transport into the xylem, although the GSH content in lateral roots remained unaffected, possibly due to an overall reduction in water status. (ii) Flooding decreased APS reductase activity in the anoxic roots. This may be due to enhanced GSH transport to the roots, but it is more likely to be the result of a change in metabolism leading to diminished energy gain in the roots. (iii) Mycorrhization enhanced the GSH content in the phloem, while SO4 2- uptake was not affected. This clearly goes against the demand-driven control model. (iv) Under both short- and long-term exposure to elevated pCO2, the APS reductase activity in leaves and lateral roots did not correlate with the GSH contents therein. Therefore, it must be assumed that, under these conditions, regulation of S nutrition goes beyond the demand-driven control model, and occurs within the network of other nutrient metabolism. (v) Atmospheric S in the form of H2S enhanced the reduced sulfur content of the phloem and lateral roots. Under these conditions, the SO4 2- loaded into the xylem decreased. It would appear that the demand-driven control model of sulfur nutrition is not always valid in the case of deciduous trees.
Key words
APS reductase - deciduous trees - glutathione - phloem transport - sulfate uptake - xylem transport
References
- 1 Adams C. A., Rinne R. W.. Influence of age and sulfur metabolism on ATP sulfurylase activity in the soybean and survey of selected species. Plant Physiol.. (1969); 44 1241-1245
- 2 Adiputra I. G. K., Anderson J. W.. Distribution and redistribution of sulfur taken up from nutrient solution during vegetative growth in barley. Physiol. Plant.. (1992); 85 453-460
- 3 Adiputra I. G. K., Anderson J. W.. Effect of sulfur nutrition on redistribution of sulfur in vegetative barley. Physiol. Plant.. (1995); 95 643-650
- 4 Arisi A.-C. M., Noctor G., Foyer C., Jouanin L.. Modification of thiol concentrations in poplar (Populus tremula × P. alba) overexpressing enzymes involved in glutathione synthesis. Planta. (1997); 203 362-372
- 5 Barroso C., Romero L. C., Cejudo F. J., Vega J. M., Gotor C.. Salt-specific regulation of the cytosolic O-acetylserine(thiol)lyase gene from Arabidopsis thaliana is dependent on abscisic acid. Plant Mol. Biol.. (1999); 40 729-736
- 6 Bassirirad H.. Kinetics of nutrient uptake by roots: responses to global change. New Phytol.. (2000); 147 155-169
- 7 Bell C. I., Cram W. J., Clarkson D. T.. Compartmental analysis of 35SO4 2- exchange kinetics in roots and leaves of a tropical legume Macroptilium atropurpureum cv. Sirato. J. Exp. Bot.. (1994); 45 879-886
- 8 Bell C. I., Clarkson D. T., Cram W. J.. Sulfate supply and its regulation of transport in roots of a tropical legume Macroptilium atropurpureum cv. Sirato. J. Exp. Bot.. (1995 a); 46 65-71
- 9 Bell C. I., Clarkson D. T., Cram W. J.. Partitioning and redistribution of sulfur during S-stress in Macroptilium atropurpureum cv. Siratro. J. Exp. Bot.. (1995 b); 46 73-81
-
10 Bergmann L., Rennenberg H..
Glutathione metabolism in plants. De Kok, L. J., Stulen, I., Rennenberg, H., Brunold, C., and Rauser, W. E., eds. Sulfur Nutrition and Assimilation in Higher Plants. The Hague; SPB Academic Publishing (1993): 109-123 - 11 Bick J.-A., Setterdahl A. T., Knaff D. B., Chen Y., Pitcher L. H., Zilinskas B. A., Leustek T.. Regulation of the plant-type 5′-adenyly sulfate reductase by oxidative stress. Biochem.. (2001); 40 9040-9048
- 12 Blake-Kalff M. M. A., Harrison K. R., Hawkesford M. J., Zhao F. J., McGrath S. P.. Distribution of sulfur within oilseed rape leaves in response to sulfur deficiency during vegetative growth. Plant Physiol.. (1998); 118 1337-1344
- 13 Blaschke L., Schneider A., Herschbach C., Rennenberg H.. Reduced-sulfur allocation from three-year-old needles of Norway spruce (Picea abies [Karst] L.). J. Exp. Bot.. (1996); 47 1025-1032
- 14 Bolchi A., Petrucco S., Tenca P. L., Foroni C., Ottonello S.. Coordinate modulation of maize sulfate permease and ATP sulfurylase mRNAs in response to variations in sulfur nutritional status: stereospecific down regulation by L-cysteine. Plant Mol. Biol.. (1999); 39 527-537
- 15 Bourgis F., Roje S., Nuccio M. L., Fisher D. B., Tarczynski M. C., Li C., Herschbach C., Rennenberg H., Pimenta M. J., Shen T.-L., Gage D. A., Hanson A. D.. S-Methylmethionine plays a major role in phloem sulfur transport and is synthesized by a novel type of methyltransferase. Plant Cell. (1999); 11 1485-1497
-
16 Brändle R..
Überflutung und Sauerstoffmangel. In Stress bei Pflanzen . Brunold, C., Rüegsegger, A., and Brändle, R., eds. Bern; Verlag Paul Haupt (1996): 133-148 - 17 Brunold C.. Changes in ATP sulfurylase and adenosine 5′-phosphosulfate sulfotransferase activity during autumnal senescence of beech leaves. Physiol. Plant.. (1983); 59 319-323
-
18 Brunold C..
Reduction of sulfate to sulfide. Rennenberg, H., Brunold, C., De Kok, L. J., and Stulen, I., eds. Sulfur Nutrition and Sulfur Assimilation in Higher Plants. The Hague; SPB Academic Publishing (1990): 13-31 -
19 Brunold C..
Regulatory interactions between sulfate and nitrate assimilation. DeKok, L. J., Stulen, I., Rennenberg, H., Brunold, C., and Rauser, W. E., eds. Sulfur Nutrition and Assimilation in Higher Plants. The Hague; SPB Academic Publishing (1993): 61-75 - 20 Brunold C., Suter M.. Localization of enzymes of assimilatory sulfate reduction in pea roots. Planta. (1989); 179 228-234
- 21 Burgener M., Suter M., Jones S., Brunold C.. Cyst(e)ine is the transport metabolite of assimilated sulfur from bundle-sheat to mesophyll cells in maize leaves. Plant Physiol.. (1998); 116 1315-1322
- 22 Cacco G., Saccomani M., Ferrari G.. Development of sulfate uptake capacity and ATP-sulfurylase activity during root elongation in maize. Plant Physiol.. (1977); 60 582-584
-
23 Clarkson D. T., Hawkesford M. J., Davidian J.-C..
Membrane and long-distance transport of sulfate. De Kok, L. J., Stulen, I., Rennenberg. H., Brunold, C., and Rauser, W. E., eds. Sulfur Nutrient and Sulfur Assimilation in Higher Plants. The Hague; SPB Academic Publishing (1993): 3-19 - 24 Clarkson D. T., Diogo E., Amancio S.. Uptake and assimilation of sulfate by sulfur deficient Zea mays cells: the role of O-acetyl-L-serine in the interaction between nitrogen and sulfur assimilation pathways. Plant Physiol. Biochem.. (1999); 37 283-290
- 25 Cobbett C. S.. Phytochelatins and their roles in heavy metal detoxification. Plant Physiol.. (2000 a); 123 825-832
- 26 Cobbett C. S.. Phytochelatin biosynthesis and function in heavy-metal detoxification. Curr. Opi. Plant Biol.. (2000 b); 3 211-216
-
27 Cram W. J..
Uptake and transport of sulfate. Rennenberg, H., Brunold, C., De Kok, L. J., and Stulen, I., eds. Sulfur Nutrient and Sulfur Assimilation in Higher Plants. The Hague; SPB Academic Publishing (1990): 3-11 - 28 Curtis P. S., Wang X.. A meta-analysis of elevated CO2 effects on woody plant mass, form and physiology. Oecologia. (1998); 113 299-313
-
29 Davidian J.-C., Hatzfeld Y., Cathala N..
Sulfate uptake and transport in plants. Brunold, C., Rennenberg, H., De Kok, L. J., Stulen, I., and Davidian, J. C., eds. Sulfur Nutrition and Sulfur Assimilation in Higher Plants. Bern; Paul Haupt Publishers (2000): 19-40 -
30 De Kok L. J..
Sulfur metabolism in plants exposed to atmospheric sulfur. Rennenberg, H., Brunold, C., De Kok, L. J., and Stulen, I., eds. Sulfur Nutrition and Sulfur Assimilation in Higher Plants. The Hague; SPB Academic Publishing (1990): 111-130 -
31 De Kok L. J., Stuiver C. E. E., Stulen I..
Impact of atmospheric H2S on plants. De Kok, L. J. and Stulen, I., eds. Responses of Plant Metabolism to Air Pollution and Global Change. Leiden; Backhuys Publishers (1998): 51-63 -
32 De Kok L. J., Westerman S., Stuiver C. E. E., Stulen I..
Atmospheric H2S as plant sulfur source: Interaction with pedospheric sulfur nutrition - a case study with Brassica oleracea L.. Brunold, C., Rennenberg, H., De Kok, L. J., Stulen, I., and Davidian, J. C., eds. Sulfur Nutrition and Sulfur Assimilation in Higher Plants. Bern; Paul Haupt Publishers (2000): 41-55 -
33 Dickson R. E..
Assimilate distribution and storage. Raghavendra, A. S., ed. Physiology of Tree. Wiley-Interscience Publication (1991): 51-85 - 34 Dickson R. E., Tomlinson P. T.. Oak growth, development and carbon metabolism in response to water stress. Ann. Sci. For.. (1996); 53 181-196
- 35 Dijkshoorn W., van Wijk A. L.. The sulfur requirements of plants as evidenced by the sulfur-nitrogen ratio in the organic matter. A review of published data. Plant Soil. (1967); 26 629-635
- 36 Ericsson A.. Seasonal changes in translocation of 14C from different age-classes of needles on 20-year-old Scots pine trees (Pinus silvestris). . Physiol. Plant.. (1978); 43 351-358
- 37 Eriksen J., Nielsen M., Mortensen J. V., Schjrring J. K.. Redistribution of sulfur during generative growth of barley plants with different sulfur and nitrogen status. Plant Soil. (2001); 230 239-246
- 38 Escher P., Eiblmeier M., Hetzger I., Rennenberg H.. Seasonal and spatial variation of reduced-sulfur compounds in mistletoes (Viscum album) and xylem sap of its hosts (Populus × euramericana and Abies alba). . Physiol. Plant.. (2002); 117 72-78
- 39 Eschrich W.. Bidirektionelle Translokation in Siebröhren. Planta. (1967); 73 37-49
- 40 Fitzgerald M. A., Ugalde T. D., Anderson J. W.. Sulfur nutrition changes the source of S in vegetative tissues of wheat during generative growth. J. Exp. Bot.. (1999 a); 50 499-508
- 41 Fitzgerald M. A., Ugalde T. D., Anderson J. W.. Sulfur nutrition affects the pools of S available to developing grains of wheat. J. Exp. Bot.. (1999 b); 50 1587-1592
- 42 Fitzgerald M. A., Ugalde T. D., Anderson J. W.. Sulfur nutrition affects delivery and metabolism of S in developing endosperms of wheat. J. Exp. Bot.. (2001); 52 1519-1526
- 43 Fordham M., Barnes J. D., Bettarini I., Polle A., Slee N., Raines C., Miglietta F., Raschi A.. The impact of elevated CO2 on growth and photosynthesis in Agrostis canina L. ssp. monteluccii adapted to contrasting atmospheric CO2 concentrations. Oecologia. (1997); 110 169-178
- 44 Giordano M., Pezzoni V., Hell R.. Strategies for the allocation of resources under sulfur limitation in the green alga Dunaliella salina. . Plant Physiol.. (2000); 124 857-864
- 45 Gullner G., Kömives T., Rennenberg H.. Enhanced tolerance of transgenic poplar plants overexpressing γ-glutamylcysteine synthetase towards chloracetanilide herbicides. J. Exp. Bot.. (2001); 52 971-979
- 46 Harada E., Kusano T., Sano H.. Differential expression of genes encoding enzymes involved in sulfur assimilation pathway in response to wounding and jasmonate in Arabidopsis thaliana. . J. Plant Physiol.. (2000); 156 272-276
- 47 Hartmann T., Mult S., Suter M., Rennenberg H., Herschbach C.. Leaf age-dependent differences in sulfur assimilation and allocation in poplar (Populus tremula × P. alba) leaves. J. Exp. Bot.. (2000); 51 1077-1088
- 48 Hawkesford M.. Plant responses to sulfur deficiency and the genetic manipulation of sulfate transporters to improve S-utilisation efficiency. J. Exp. Bot.. (2000); 51 131-138
-
49 Hawkesford M. J., Smith F. W..
Molecular biology of higher plant sulfate transporters. Cram, W. J., De Kok, L. J., Stulen, I., Brunold, C., and Rennenberg, H., eds. Sulfur Metabolism in Higher Plants. Leiden; Backhuys Publishers (1997): 13-25 - 50 Hawkesford M. J., Wray J. L.. Molecular genetics of sulfate assimilation. Adv. Bot. Res.. (2000); 33 160-223
- 51 Hell R., Hillebrand H.. Plant concepts for mineral acquisition and allocation. Curr. Opin. Biotech.. (2001); 12 161-168
- 52 Hell R., Jost R., Berkowitz O., Wirtz M.. Molecular and biochemical analysis of the enzymes of cysteine biosynthesis in the plant Arabidopsis thaliana. . Amino Acids. (2002); 22 245-257
- 53 Herschbach C., Rennenberg H.. Long-distance transport of 35S - sulfur in 3-year-old beech trees (Fagus sylvatica). . Physiol. Plant.. (1995); 95 379-386
- 54 Herschbach C., Rennenberg H.. Storage and re-mobilization of sulfur in beech trees (Fagus sylvatica). . Physiol. Plant.. (1996); 98 125-132
- 55 Herschbach C., Rennenberg H.. Significance of phloem-translocated organic sulfur compounds for the regulation of sulfur nutrition. Prog. Bot.. (2001 a); 62 177-193
- 56 Herschbach C., Rennenberg H.. Sulfur nutrition of deciduous trees. Naturwissenschaften. (2001 b); 88 25-36
- 57 Herschbach C., De Kok L. J., Rennenberg H.. Net uptake of sulfate and its transport to the shoot in tobacco plants fumigated with H2S or SO2. Plant Soil. (1995 a); 175 75-84
- 58 Herschbach C., De Kok L. J., Rennenberg H.. Net uptake of sulfate and its transport to the shoot in tobacco plants fumigated with H2S or SO2. Plant Soil. (1995 b); 175 75-84
- 59 Herschbach C., Jouanin L., Rennenberg H.. Overexpression of γ-glutamylcysteine synthetase, but not of glutathione synthetase elevates glutathione allocation in the phloem of transgenic poplar (Populus tremula × Populus alba) trees. Plant Cell Physiol.. (1998); 39 447-451
- 60 Herschbach C., van der Zalm E., Schneider A., Jouanin L., De Kok L., Rennenberg H.. Regulation of sulfur nutrition in wildtype and transgenic poplar overexpressing γ-glutamylcysteine synthetase in the cytosol as affected by atmospheric H2S. Plant Physiol.. (2000); 124 461-473
- 61 Herschbach C., Pilch B., Tausz M., Rennenberg H., Grill D.. Metabolism of reduced and inorganic sulfur in pea cotyledons and distribution into developing seedlings. New Phytol.. (2002); 153 73-80
- 62 Herschbach C., Mult S., Hartmann T., Kopriva S.. Sulfate reduction in leaves and roots of transgenic poplar (Populus tremula × P. alba) overexpressing bacterial γ-glutamylcysteine synthetase in the chloroplast - the significance of phloem allocated sulfur. Plant, Cell Environm.. (2003); submitted
- 63 Kopriva S., Jones S., Koprivova A., Suter M., von Ballmoos P., Brander K., Flückinger J., Brunold C.. Influence of chilling stress on the intercellular distribution of assimilatory sulfate reduction and thiols in Zea mays. . Plant. Biol.. (2001); 3 24-31
- 64 Kopriva S., Suter M., von Ballmoos P., Hesse H., Krähenbühl U., Rennenberg H., Brunold C.. Interaction of sulfate assimilation with carbon and nitrogen metabolism in Lemna minor. Plant Physiol.. (2002); 130 1406-1413
- 65 Köstner B., Schupp R., Schulze E.-D., Rennenberg H.. Organic and inorganic sulfur transport in the xylem sap and the sulfur budget of Picea abies trees. Tree Physiol.. (1998); 18 1-9
- 66 Kreuzwieser J., Rennenberg H.. Sulfate uptake and xylem loading of mycorrhizal beech roots. New Phytol.. (1998); 140 319-329
- 67 Kreuzwieser J., Herschbach C., Rennenberg H.. Sulfate uptake and xylem loading of non-mycorrhizal excised roots of young Fagus sylvatica trees. Plant Physiol. Biochem.. (1996); 34 409-416
-
68 Kreuzwieser J., Herschbach C., Rennenberg H..
Sulfate uptake by mycorrhizal (Laccaria laccata) and non-mycorrhizal roots of beech (Fagus sylvatica L.) trees. Cram, W. J., De Kok, L. J., Stulen, I., Brunold, C., and Rennenberg, H., eds. Sulfur Metabolism in Higher Plants. Leiden; Backhuys Publishers (1997): 165-168 - 69 Kronfuß G., Polle A., Tausz M., Havranek W. M., Wieser G.. Effects of ozone and mild drought stress on gas exchange, antioxidants and chloroplast pigments in current-year needles of young Norway spruce (Picea abies [L.] Karst.). Trees. (1998); 12 482-489
- 70 Lappartient A. G., Touraine B.. Demand-driven control of root ATP sulfurylase activity and SO4 2- uptake in intact canola. The role of phloem-translocated glutathione. Plant Physiol.. (1996); 111 147-157
- 71 Lappartient A. G., Vidmar J. J., Leustek T., Glass A. D. M., Touraine B.. Inter-organ signaling in plants: regulation of ATP sulfurylase and sulfate transporter genes expression in roots mediated by phloem-translocated compound. Plant J.. (1999); 18 89-95
- 72 Larsson C.-M., Larsson M., Purves J. V., Clarkson D. T.. Translocation and cycling through roots of recently absorbed nitrogen and sulfur in wheat (Triticum aestivum) during vegetative and generative growth. Physiol. Plant.. (1991); 82 345-352
- 73 Lee R. B.. Control of net uptake of nutrients by regulation of influx in barley plants recovering from nutrient deficiency. Ann. Bot.. (1993); 72 223-230
- 74 Leustek T., Martin M. N., Bick J.-A., Davies J. P.. Pathways and regulation of sulfur metabolism revealed through molecular and genetic studies. Annu. Rev. Plant Physiol. Plant Mol. Biol.. (2000); 51 141-165
- 75 Marabottini R., Schraml C., Paolacci A. R., Sorgona A., Raschi A., Rennenberg H., Badiani M.. Foliar antioxidant status of adult Mediterranean oak species (Quercus ilex L. and Q. pupescens Willd.) exposed to permanent CO2-enrichment and to seasonal water stress. Environ. Pollut.. (2001); 115 413-423
- 76 Matsuda Y., Colman B.. Characterization of sulfate transport in the green alga Chlorella ellipsoidea. . Plant Cell Physiol.. (1995); 36 1291-1296
- 77 Mattanovich J., Ehrenhöfer M., Schafellner C., Tausz M., Führer E.. The role of sulfur compounds for breeding success of Ips typographus L. (Col., Scolytidae) on Norway spruce (Picea abies [L.] Karst.). J. Appl. Ent.. (2001); 125 425-431
- 78 Monaghan J. M., Scrimgeour C. M., Stein W. M., Zhao F. J., Evans E. J.. Sulfur accumulation and redistribution in wheat (Triticum aestivum): a study using stable sulfur isotope ratios as a tracer system. Plant Cell Environm.. (1999); 22 831-839
- 79 Morrison T. M.. Uptake of sulfur by mycorrhizal plants. New Phytol.. (1962); 61 21-27
- 80 Morrison T. M.. Uptake of sulfur by excised beech mycorrhizas. New Phytol.. (1963); 62 44-49
- 81 Noctor G., Foyer C. H.. Ascorbate and glutathione: keeping active oxygen under control. Annu. Rev. Plant Physiol. Plant Mol. Biol.. (1998); 49 249-279
- 82 Noctor G., Strohm M., Jouanin L., Kunert K.-J., Foyer C., Rennenberg H.. Synthesis of glutathione in leaves of transgenic poplar overexpression γ-glutamylcysteine synthetase. Plant Physiol.. (1996); 112 1071-1078
- 83 Noctor G., Arisi A.-C. M., Jouanin L., Valadier M.-H., Roux Y., Foyer C.. Light dependent modulation of foliar glutathione synthesis and associated amino acid metabolism in poplar overexpressing γ-glutamylcysteine synthetase. Planta. (1997); 202 357-369
- 84 Noctor G., Arisi A.-C. M., Jouanin L., Foyer C.. Manipulation of glutathione and amino acid biosynthesis in the chloroplast. Plant Physiol.. (1998); 118 471-482
- 85 Noctor G., Arisi A.-C. M., Jouanin L., Foyer C.. Photorespiratory glycine enhances glutathione accumulation in both the chloroplastic and cytosolic compartments. J. Exp. Bot.. (1999); 50 1157-1167
- 86 Noctor G., Gomez L., Vanacker H., Foyer C. H.. Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signalling. J. Exp. Bot.. (2002); 53 1283-1304
- 87 Norby R. J., Wullschleger S. D., Gunderson C. A., Johnson D. W., Ceulemans R.. Tree responses to rising CO2 in field experiments: implications for future forest. Plant Cell Environm.. (1999); 22 683-714
- 88 Peterson A. G., Ball J. T., Luo Y., Field C. B., Curtis P. S., Griffin K. L., Gunderson C. A., Norby R. J., Tissue D. T., Forstreuter M., Rey A., Vogel C. S.. CMEAL participants . Quantifying the response of photosynthesis to changes in leaf nitrogen content and leaf mass per area in plants grown under atmospheric CO2 enrichment. Plant Cell Environm.. (1999 a); 22 1109-1119
- 89 Peterson A. G., Ball J. T., Luo Y., Field C. B., Reich P. B., Curtis P. S., Griffin K. L., Gunderson C. A., Norby R. J., Tissue D. T., Forstreuter M., Rey A., Vogel C. S.. CMEAL participants . The photosynthesis-leaf nitrogen relationship at ambient and elevated atmospheric carbon dioxide: a meta-analysis. Global Change Biology. (1999 b); 5 331-346
- 90 Price A., Hendry G. A.. Iron-catalysed oxygen radical formation and its possible contribution to drought damage in nine native grasses and three cereals. Plant, Cell Environm.. (1991); 14 477-484
- 91 Polle A., McKee I., Blaschke L.. Altered physiological and growth responses to elevated CO2 in offspring from holm oak (Quercus ilex. L.) mother trees with life-time exposure to naturally elevated CO2. Plant Cell Environm.. (2001); 24 1075-1083
- 92 Pritchard S. G., Rogers H. H., Prior S. A., Peterson C. M.. Elevated CO2 and plant structure: a review. Global Change Biol.. (1999); 5 807-837
- 93 Quartacci M., Navaro-Izzo F.. Water stress and free radical mediated changes in sun flower seedlings. J. Plant Physiol.. (1992); 136 621-625
- 94 Rauser W. E.. Phytochelatins and related peptides. Plant Physiol.. (1995); 109 1141-1149
- 95 Rauser W. E.. Structure and function of metal chelators produced by plants. Cell Biochem. Biophy.. (1999); 31 19-48
-
96 Rauser W. T..
The role of thiols in plants under metal stress. Brunold, C., Rennenberg, H., De Kok, L. J., Stulen, I., and Davidian, J. C., eds. Sulfur Nutrition and Sulfur Assimilation in Higher Plants. Bern; Paul Haupt Publishers (2000): 169-183 -
97 Rennenberg H..
Processes involved in glutathione metabolism. Wallsgrove, R. M., ed. Amino Acids and Their Derivatives in Higher Plants - Biosynthesis and Metabolism. Cambridge; Cambridge University Press (1995): 155-171 - 98 Rennenberg H.. The significance of ectomycorrhizal fungi for sulfur nutrition of trees. Plant Soil. (1999); 215 115-122
-
99 Rennenberg H., Herschbach C..
Responses of plants to atmospheric sulfur. Iqbal, M. and Yunus, M., eds. Plant Responses to Air Pollution. New York; Wiley and Sons (1996): 285-293 - 100 Rennenberg H., Schupp R., Schneider A.. Thiol composition of a xylem-tapping mistletoe and the xylem sap of its hosts. Phytochem.. (1994); 37 975-977
- 101 Rotte C., Leustek T.. Differential subcellular localization and expression of ATP sulfurylase and 5′adenylylsulfate reductase during ontogenesis and plastid forms of ATP sulfurylase may have specialized functions. Plant Physiol.. (2000); 124 715-724
- 102 Ruiz J. M., Blumwald E.. Salinity-induced glutathione synthesis in Brassica napus. . Planta. (2002); 214 965-969
-
103 Saito K..
Biosynthesis of cysteine. Singh, B. K., ed. Plant Amino Acids Biochemistry and Biotechnology. New York, Basel, Hong Kong; Mercel Dekker, Inc. (1999): 267-291 - 104 Saxe H., Ellsworth D. S., Heath J.. Tree and forest functioning in an enriched CO2 atmosphere. New Phytol.. (1998); 139 395-436
- 105 Scherer H. W.. Sulfur in crop production. Eur. J. Agro. (2001); 14 81-111
- 106 Schmidt A.. Development of adenosine-5′-phosphosulfate-sulfotransferase in sunflower (Heliantus annuus L.). Z. Pflanzenphysiologie. (1976); 78 164-168
- 107 Schmutz D., Brunold C.. Rapid and simple measurement of ATP-sulfurylase activity in crude plant extracts using ATP meter for bioluminescence determination. Anal. Biochem.. (1982); 121 151-155
- 108 Schneider A., Schatten T., Rennenberg H.. Exchange between phloem and xylem during long-distance transport of glutathione in spruce trees (Picea abies [Karst.] L.). J. Exp. Bot.. (1994); 45 457-462
-
109 Schnug E..
Significance of sulfur for the quality of domesticated plants. Cram, W. J., De Kok, L. J., Stulen, I., Brunold, C., and Rennenberg, H., eds. Sulfur Metabolism in Higher Plants. Leiden; Backhuys Publishers (1997): 109-130 - 110 Schraml C., Herschbach C., Eiblmeier M., Rennenberg H.. Consequences of elevated CO2, augmented nitrogen-deposition and soil type on the soluble nitrogen and sulfur in the phloem of beech (Fagus sylvatica) and spruce (Picea abies) in a competitive situation. Physiol. Plant.. (2002); 115 258-266
- 111 Schulte M.. Der Einfluß von erhöhtem atmosphärischem CO2 auf den Kohlenstoff-, Stickstoff- und Schwefelhaushalt von Eichen. Dissertation, Albert-Ludwigs-Universität Freiburg i. Br. Frankfurt, Germany; Wissenschafts-Verlag Dr. Wigbert Maraun (1998)
- 112 Schulte M., Herschbach C., Rennenberg H.. Interactive effects of CO2, mycorrhization and drought stress on long-distance transport of reduced-sulfur in young pedunculate oak trees. Plant Cell Environm.. (1998); 21 917-926
- 113 Schulte M., von Ballmoos P., Rennenberg H., Herschbach C.. Life-long growth of Quercus ilex L. at natural CO2 springs acclimates sulfur, nitrogen and carbohydrate metabolism of the progeny to elevated pCO2. Plant Cell Environm.. (2002); 25 1715-1727
- 114 Schupp R., Schatten T., Willenbrink J., Rennenberg H.. Long-distance transport of reduced-sulfur in spruce (Picea abies L.). J. Exp. Bot.. (1992); 43 1243-1250
- 115 Schwanz P., Polle A.. Differential stress responses of antioxidative systems to drought in pendunculate oak (Quercus robur) and maritime pine (Pinus pinaster) grown under high CO2 concentrations. J. Exp. Bot.. (2001); 52 133-143
- 116 Seegmüller S.. Der Einfluß von Mykorrhizen, atmosphärischem Kohlendioxid und Wassermangel auf das Wachstum und die Schwefel- und Stickstoffernährung der Stieleiche (Quercus robur L.). Dissertation, Albert-Ludwigs-Universität Freiburg i. Br. Frankfurt, Germany; Wissenschafts-Verlag Dr. Wigbert Maraun (1998)
- 117 Seegmüller S., Rennenberg H.. Interactive effects of mycorrhization and elevated carbon dioxide on growth of young pedunculate oak (Quercus robur L.) trees. Plant Soil. (1994); 167 325-329
- 118 Seegmüller S., Schulte M., Herschbach C., Rennenberg H.. Interactive effects of mycorrhization and elevated atmospheric CO2 on sulfur nutrition of young pedunculate oak (Quercus robur L.) trees. Plant Cell Environm.. (1996); 19 418-426
- 119 Smirnoff N.. The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol.. (1993); 125 27-58
- 120 Smith I. K., Lang A. L.. Translocation of sulfate in soybean (Glycine max L. Merr). Plant Physiol.. (1988); 86 798-802
- 121 Smith F. W., Hawkesford M. J., Ealing P. M., Clarkson D. T., Vanden Berg P. J., Belcher A. R., Warrilow A. G. S.. Regulation of expression of a cDNA from barley roots encoding a high affinity sulfate transporter. Plant J.. (1997); 12 875-884
- 122 Stitt M., Krapp A.. The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background. Plant Cell Environm.. (1999); 22 583-621
- 123 Strohm M., Jouanin L., Kunert K. J., Pruvost C., Polle A., Foyer C., Rennenberg H.. Regulation of glutathione synthesis in leaves of transgenic poplar (Populus tremula × P. alba) overexpressing glutathione synthetase. Plant J.. (1995); 7 141-145
- 124 Sunarpi and Anderson J. W.. Distribution and redistribution of sulfur supplied as [35S]sulfate to roots during vegetative growth of soybean. Plant Physiol.. (1996 a); 110 1151-1157
- 125 Sunarpi and Anderson J. W.. Effect of sulfur nutrition on the redistribution of sulfur in vegetative soybean plants. Plant Physiol.. (1996 b); 112 623-631
- 126 Sunarpi and Anderson J. W.. Effect of nitrogen nutrition on remobilization of protein sulfur in the leaves of vegetative soybean and associated changes in soluble sulfur metabolites. Plant Physiol.. (1997); 115 1671-1680
- 127 Sunarpi and Anderson J. W.. Direct evidence for involvement of the root in the redistribution of sulfur between leaves. J. Plant Nutrition. (1998); 21 1273-1286
- 128 Tabe L., Droux M.. Sulfur assimilation in developing lupin cotyledons could contribute significantly to the accumulation of organic sulfur reserves in seed. Plant Physiol.. (2001); 126 176-187
- 129 Takahashi H., Yamazaki M., Sasakura N., Watanabe A., Leustek T., de Almeida-Engler J., Engler G., Van Montagu M., Saito K.. Regulation of cysteine biosynthesis in higher plants: A sulfate transporter induced in sulfate-starved roots plays a central role in Arabidopsis thaliana. . Proc. Natl. Acad. Sci. USA. (1997); 94 11102-11107
- 130 Turnbull M. H., Tissue D. T., Griffin K. L., Rogers G. N. D., Whitehead D.. Photosynthetic acclimation to long-term exposure to elevated CO2 concentration in Pinus radiata . D. Don. is related to age of needles. Plant Cell Environm.. (1998); 21 1019-1028
- 131 Vanacker H., Carver T. L. W., Foyer C. H.. Pathogen-induced changes in the antioxidant status of the apoplast in barley leaves. Plant Physiol.. (1998 a); 117 1103-1114
- 132 Vanacker H., Foyer C. H., Carver T. L. W.. Changes in apoplastic antixidants induced by powdery mildew attack in oat genotypes with race non-specific resistance. Planta. (1998 b); 208 444-452
- 133 Vanacker H., Carver T. L. W., Foyer C. H.. Early H2O2 accumulation in mesophyll cells leads to induction of glutathione during hyper-sensitive response in the barley-powdery mildew interaction. Plant Physiol.. (2000); 123 1289-1300
- 134 van der Zalm E.. Regulation of sulfate uptake and xylem loading of poplar roots (Populus tremula × P. alba). Ph. D. Thesis. Albert-Ludwigs-Universität Freiburg (2001)
-
135 van der Zalm E., Schneider A., Rennenberg H..
Characterisation and regulation of sulfate uptake and xylem loading of poplar (Populus tremula × alba) roots. Brunold, C., Rennenberg, H., De Kok, L. J., Stulen, I., and Davidian, J.-C., eds. Sulfur Nutrition and Sulfur Assimilation in Higher Plants. Bern; Paul Haupt (2000): 277-282 - 136 von Arb C., Brunold C.. Enzymes of assimilatory sulfate reduction in leaves of Pisum sativum: activity changes during ontogeny and in vivo regulation by H2S and cyst(e)ine. Physiol. Plant.. (1986); 67 81-86
- 137 Ward J. K., Strain B. R.. Elevated CO2 studies: past, present and future. Tree Physiol.. (1999); 19 211-220
- 138 Westerman S., Stulen I., Suter M., Brunold C., De Kok L. J.. Atmospheric H2S as sulfur source for Brassica oleracea: consequences for the activity of the enzymes of the assimilatory sulfate reduction pathway. Plant Physiol. Biochem.. (2001); 39 425-432
- 139 Wingate V. P. M., Lawton M. A., Lamb C. J.. Glutathione causes a massive and selective induction of plant defense genes. Plant Physiol.. (1988); 87 206-210
- 140 Yamaguchi Y., Nakamura T., Harada E., Koizumi N., Sano H.. Differential accumulation of transcripts encoding sulfur assimilation enzymes upon sulfur and/or nitrogen deprivation in Arabidopsis thaliana. . Biosci. Biotechnol. Biochem.. (1999); 63 762-766
- 141 Yildiz F. H., Davies J. P., Grossman A. R.. Characterization of sulfate transport in Chlamydomonas reinhardtii during sulfur-limited and sulfur-sufficient growth. Plant Physiol.. (1994); 104 981-987
- 142 Zenk M. H.. Heavy metal detoxification in higher plants - a review. Gene. (1996); 179 21-30
- 143 Zhao F. J., Wood A. P., McGrath A. P.. Effects of sulfur nutrition on growth and nitrogen fixation of pea (Pinus sativum L.). Plant Soil. (1999 a); 212 209-219
- 144 Zhao F. J., Salmon S. E., Withers P. J. A., Monaghan J. M., Evans E. J., Shewry P. R., McGrath S. P.. Variation in the bread making quality and rheological properties of wheat in relation to sulfur nutrition under field conditions. J. Cer. Sci.. (1999 b); 30 19-31
- 145 Zhao F. J., Hawkesford M. J., McGrath S. P.. Sulfur assimilation and effects on yield and quality of wheat. J. Cer. Sci.. (1999 c); 30 1-17
- 146 Zhao F. J., Salmon S. E., Withers P. J. A., Evans E. J., Monaghan J. M., Shewry P. R., McGrath S. P.. Responses of breadmaking quality to sulfur in three wheat varieties. J. Sci. Food Agric.. (1999 d); 79 1865-1874
C. Herschbach
Albert-Ludwigs-Universität Freiburg
Institut für Forstbotanik und Baumphysiologie
Professur für Baumphysiologie
Georges-Köhler-Allee 053/054
79085 Freiburg
Germany
Email: cornelia.herschbach@ctp.uni-freiburg.de
Section Editor: H. Rennenberg