Subscribe to RSS
DOI: 10.1055/s-2003-40838
Tuning the Reactivity of O-tert-Butyldimethylsilylimidazolyl Aminals Towards Organolithium Reagents
Publication History
Publication Date:
24 July 2003 (online)
Abstract
O-tert-Butyldimethylsilylimidazolyl aminals are N,O-acetals that form readily from aldehydes, and although they function as aldehyde stabilizing and protecting groups under various conditions, we report here that they react with organolithium reagents similarly to the parent aldehydes. The mechanism involves the intermediate formation of a 2-imidazolyl anion as is exemplified by the isolation of 2-TBDMS-imidazole. Substitution of the imidazolyl moiety at the 2-position renders these aldehyde derivatives stable to organolithium reagents, thus allowing for the tuning of their reactivity.
Key words
aldehydes - N,O-acetals - protecting groups - organometallic reagents - Brook rearrangements
- 1
Ogawa T.Matsui M. Agr. Biol. Chem. 1970, 34: 969 -
2a
Gasparini JP.Grassend R.Maire JC.Elguero J. J. Organomet. Chem. 1980, 188: 141 -
2b
Gasparini JP.Grassend R.Maire JC.Elguero J. J. Organomet. Chem. 1981, 208: 309 - 3
Andrews PA.Bachur NR.Musser SM.Wright J.Callery PS. J. Chromatogr. 1987, 419: 271 - 4
Magnin GC.Dauvergne J.Burger A.Biellmann J.-F. Tetrahedron Lett. 1996, 37: 7833 - 5
Quan LG.Cha JK. Synlett 2001, 1925 -
6a
Saha AK.Schairer W.Waychunas C.Prasad CVC.Sardaro M.Upso DA.Kruse LI. Tetrahedron Lett. 1993, 34: 6017 -
6b
Kers A.Szabo T.Stawinski J. J. Chem. Soc., Perkin Trans. 1 1999, 2585 -
6c
Brown P.Richardson CM.Mensah LM.Osborne NF.Walker G. Biorg. Med. Chem. 1999, 7: 2473 -
6d
Gunji H.Vasella A. Helv. Chim. Acta 2000, 83: 1331 - 8
Kamal A.Sandbhor M.Ramana KV. Tetrahedron: Asymmetry 2002, 13: 815 - 9
Arvidsson PI.Davidsson O.Hilmersson G. Tetrahedron: Asymmetry 1999, 10: 527 - 10
Chen D.-W.Ochiai M. J. Org. Chem. 1999, 64: 6804 -
11a
Pini D.Rosini C.Bertucci C.Salvadori P. Gazz. Chim. Ital. 1986, 116: 603 -
11b
Screttas CG.Steele BR. J. Org. Chem. 1989, 54: 1013 - 12
Eichin KH.Beckhaus HP.Hellmann S.Fritz H.Peters EM. Chem. Ber. 1983, 116: 1787 -
13a
Olah GA.Wu A.Faroog O.Prakash GK. J. Org. Chem. 1990, 55: 1792 -
13b
Roberts DD.Hall EW. J. Org. Chem. 1988, 53: 2573 - 15
Iddon B.Ngochindo RI. Heterocycles 1994, 38: 2487 -
16a
Comanita BM.Woo S.Fallis AG. Tetrahedron Lett. 1999, 40: 5283 -
16b
Lautens M.Delanghe PHM.Goh JB.Zhang CH. J. Org. Chem. 1995, 60: 4213 ; and references therein - For earlier 1,4-O-to-C sp2 silyl migrations, see:
-
17a
Bures EJ.Keay BA. Tetrahedron Lett. 1987, 28: 5965 -
17b
Bures EJ.Keay BA. Tetrahedron Lett. 1988, 29: 1247 -
17c
Spinazzé PG.Keay BA. Tetrahedron Lett. 1989, 30: 1765 -
17d
Braun M.Mahler H. Angew. Chem., Int. Ed. Engl. 1989, 28: 896 -
17e
Kim KD.Magriotis PA. Tetrahedron Lett. 1990, 31: 6137 -
17f
Beese G.Keay BA. Synlett 1991, 33 -
17g
Wang KK.Liu C.Gu YG.Burnett FN. J. Org. Chem. 1991, 56: 1914 - 18
West R.Lowe R.Stewart HF.Wright A. J. Am. Chem. Soc. 1971, 93: 282 - 19
Brook AG. J. Am. Chem. Soc. 1958, 80: 1886 -
20a
Pinkerton FH.Thames SF. J. Heterocycl. Chem. 1972, 9: 67 -
20b
Jutzi P.Sakrib W. Chem. Ber. 1973, 106: 2815 - 21
Mathews DP.McCarthy JR.Barbuch RJ. J. Heterocycl. Chem. 1988, 25: 1845
References
2d: Yield:
55%, white solid, mp (MeOH/H2O): 264-265 °C. Rf (CH2Cl2/MeOH,
9:1): 0.34. 1H NMR (300 MHz, CDCl3) δ 0.07,
0.08, 0.12, 0.16 (s, 3 H each), 0.82 (s, 18 H), 1.33, 1.36 (d, 3
H each), 1.72-1.80 (m, 1 H), 2.02-2.10 (m, 1 H), 2.95
(hpt, 1 H), 4.13 (d, 1 H, J = 1.4
Hz, H-4′), 4.53 (d, 1 H, J = 4.9
Hz, H-3′), 5.74 (d, 1 H, J = 1.5
Hz, H-5′), 5.85 (dd,
1 H, J = 11.0
Hz, 4.4 Hz, H-1′), 7.14 (s, 2 H), 7.60 (s, 1 H), 7.71 (s,
1 H), 11.78 (br s, 1 H), 12.15 ppm (br s, 1 H). 13C NMR
(125 MHz, CDCl3) δ -5.2, -4.8, -4.4, -4.1,
18.3, 18.6, 19.1, 19.6, 25.9, 36.7, 38.7, 70.6, 81.6, 85.6, 89.8,
115.9, 123.0, 128.8, 139.3, 139.5, 148.3, 148.7, 156.1, 180.1 ppm. IR
(KBr): 2922, 1708, 1680, 1610, 1548, 840 cm-1.
MS (ESI): 632.4 [M + H]+,
222.5 [B + H]+. Anal.
Calcd for C29H49N7O5Si2:
C, 55.12; H, 7.82; N, 15.52; Found: C, 55.30; H, 7.81; N, 15.55.
2e: Yield 50%, white
solid, Rf (CH2Cl2/MeOH,
9:1): 0.38. 1H NMR (300 MHz, CDCl3) δ -0.38, -0.28,
0.07, 0.09, 0.16, 0.18 (s, 3 H each) 0.74, 0.89, 0.91 (s, 9 H each)
1.32 (s, 3 H) 1.36 (s, 3 H) 2.92-3.00 (hpt, 1 H) 4.18 (d,
1 H, H-4′) 4.32 (d, 1 H, H-3′) 4.73 (s,1 H, H-2′)
5.46 (d, 2 H, H-5′) 5.70 (s, 1 H, H-1′) 7.18 (d,
2 H) 7.58 (s, 1 H) 7.73 (s, 1 H) 11.48 (br s, 1 H) 12.25 ppm (br
s, 1 H). MS (ESI): 762.6 [M + H]+,
222.5 [B + H]+. Anal.
Calcd for C35H63N7O6Si3:
C, 55.15; H, 8.33; N, 12.86; Found: C, 55.00; H, 8.30; N, 12.90.
3h′:
Yield 27%, white foam, Rf (CHCl3/MeOH,
9:1): 0.53. 1H NMR (500 MHz, CDCl3) δ 0.11
(s, 6 H), 0.93 (s, 9 H), 1.26 (s, 9 H), 1.29 (s, 3 H), 1.31 (s,
3 H), 2.18 (dd, 1 H, J = 13.2
Hz, 5.5 Hz), 2.71 (hpt, 1 H), 2.72-2.78 (m, 1 H), 3.37 (s,
1 H, H-5′), 4.23 (s, 1 H, H-4′), 4.54 (d, 1 H, J = 5.9 Hz, H-3′),
5.33 (br s, 1 H, OH), 6.18 (dd, 1 H, J = 9.1
Hz, 5.5 Hz, H-1′), 7.73 (s, 1 H), 8.70 (br s, 1 H), 12.05
ppm (br s, 1 H). 13C NMR (125 MHz,
CDCl3) δ -4.2, -4.1, 18.4.
19.1, 19.4, 26.2, 27.0, 35.7, 36.8, 41.1, 77.0, 80.3, 88.0, 88.5,
123.4, 138.9, 147.2, 147.7, 155.5, 178.8 ppm. MS (ESI): 508.5 [M + H]+,
222.5 [B + H]+. Anal.
Calcd for C24H41N5O5Si:
C, 56.78; H, 8.14; N, 13.79; Found: C, 56.68; H, 8.18; N, 13.83.
3h′′: Yield 28%,
white foam, Rf (CHCl3/MeOH, 9:1):
0.57. 1H NMR (500 MHz, CDCl3) δ 0.13
(s, 6 H), 0.93 (s, 9 H), 1.04 (s, 9 H), 1.26 (s, 3 H), 1.29 (s,
3 H), 2.25 (dd, 1 H, J = 13.2
Hz, 5.8 Hz), 2.70 (hpt, 1 H), 2.81-2.88 (m, 1 H), 3.57 (s,
1 H, H-5′), 4.29 (s, 1 H, H-4′), 4.76 (d, 1 H, J = 4.7 Hz, H-3′),
5.49 (br s, 1 H, OH), 6.18 (dd, H, J = 9.5
Hz, 5.9 Hz, H-1′), 7.77 (s, 1 H), 8.62 (br s, 1 H), 12.07
(br s, 1 H). 13C NMR (125 MHz, CDCl3) δ -4.3, -3.6,
18.2, 19.0, 19.3, 26.1, 27.0, 34.2, 36.8, 42.1, 73.2, 80.7, 86.3,
91.4, 123.3, 139.2, 147.2, 147.7, 155.6, 178.7 ppm. MS (ESI): 508.5 [M + H]+, 222.5 [B + H]+.
5: Yield 82%, 1H NMR (200 MHz, CDCl3): δ 0.07 (s, 6 H), 1.25 (s, 9 H), 5.0 (br s, NH), 6.98 ppm (s, 2 H). 13C NMR (53.2 MHz, CDCl3): δ 1.0 (CH3), 25.9 (C), 30.3 (CH3), 125.5 (CH), 135.7 ppm (C).
23
6b: Yield
92%, oil. Rf (CHCl3/MeOH,
98:2): 0.36. 1H NMR (200 MHz, CDCl3): δ -0.13,
0.05 [s, 3 H each, Si(CH
3)2], 0.86 [s,
9 H, SiC(CH
3)3],
2.24 (s, 3 H, CH
3), 3.72 (s,
3 H, OCH
3), 6.45 (s, 1 H,
CHO), 6.79 (d, 1 H, J = 8.7
Hz, Ar-H), 6.81 (s, 1 H, Imid-H), 6.87 (s, 1 H, Imid-H), 7.09 ppm
(d, 2 H, J = 8.7 Hz, Ar-H). 13C
NMR (53.2 MHz, CDCl3): δ -5.0 (2 × CH3), 18.2 (C),
25.8 (3 × CH3), 36.6 (CH3), 55.5
(CH3), 80.6 (CH), 113.9 (C), 117.8 (C), 126.9 (2 × CH),
127.3 (2 × CH), 132.8 (C), 159.8 (C), 162.7 ppm (C). Anal.
Calcd for C18H28N2O2Si:
C, 65.02; H, 8.49; N, 8.42; Found: C, 65.22; H, 8.46; N, 8.45.
6c: Yield 84%, oil. 1H
NMR (200 MHz, CDCl3): δ -0.04, 0.03 [s,
3 H each, Si(CH
3)2],
0.81 [s, 9 H, SiC(CH
3)3],
0.86 [s, 9 H, C(CH
3)3],
2.31 (s, 3 H, CH
3), 5.06 (s,
1 H, CHO), 6.80 (s, 1 H, Imid-H), 6.90
ppm (s, 1 H, Imid-H). 13C NMR (53.2
MHz, CDCl3): δ -3.4, -2.8
(each CH3), 18.2
(C), 25.4 (3 × CH3), 25.7 (3 × CH3),
31.7 (C), 36.8 (CH3), 86.4 (CH), 117.2 (CH), 121.2 (CH),
162.9 ppm (C).
Typical Procedure: To a solution of the protected aldehyde 2a-e (0.5 mmol) in dry THF (20 mL/mmol) was added the organolithium reagent (2 equiv, Table [1] ), drop-wise, at -78 °C. After stirring for 10 min at -78 °C the temperature was let to slowly increase to 0 °C. The reaction mixture was quenched with sat aq NaHCO3 at 0 °C, diluted with ethyl acetate, the phases were separated and the organic phase was washed with water, dried over sodium sulfate, and concentrated under reduced pressure. The resulting crude 3a-h was purified by silica gel chromatography. Yields are reported in Table [1] .