Synlett 2003(10): 1427-1430
DOI: 10.1055/s-2003-40842
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Addition of α-Aminonitriles to α,β-Unsaturated Carbonyl Compounds: A One-pot Synthesis of Polysubstituted Pyrrolidines

Nino Meyer, Till Opatz*
Institut für Organische Chemie, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany
Fax: +49(6131)3924786; e-Mail: opatz@uni-mainz.de;
Further Information

Publication History

Received 8 May 2003
Publication Date:
24 July 2003 (online)

Abstract

The vinylogous addition of deprotonated N-alkyl-α-aminonitriles to α,β-unsaturated carbonyl compounds yields cyclic intermediates which can be reduced to form polysubstituted pyr­rolidines in a one-pot reaction sequence. Since the cyano substituent is lost in the reduction step, the aminonitriles serve as easily accessible (N-alkylamino)-substituted carbanion equivalents.

    References

  • 1a Lin N.-H. Carrera GM. Anderson DJ. J. Med. Chem.  1994,  37:  3542 
  • 1b Elliott RL. Ryther KB. Anderson DJ. Raszkiewicz JL. Campbell JE. Sullivan JP. Garvey DS. Bioorg. Med. Chem. Lett.  1995,  5:  991 
  • 2 Sonesson C. Wilkström H. Smith MW. Svensson K. Carlsson A. Waters N. Bioorg. Med. Chem. Lett.  1997,  7:  241 
  • 3a Ahn KH. Lee SJ. Lee C.-H. Hong CY. Park TK. Bioorg. Med. Chem. Lett.  1999,  9:  1379 
  • 3b Gerasimov M. Marona-Lewicka D. Kurrasch-Orbaugh DM. Qandil AM. Nichols DE. J. Med. Chem.  1999,  42:  4257 
  • For other syntheses of polysubstituted pyrrolidines, see:
  • 4a Lorthiois E. Marek I. Normant JF. J. Org. Chem.  1998,  63:  2442 
  • 4b Pearson WH. Stoy P. Synlett  2003,  903 
  • 4c Pichon M. Figadère B. Tetrahedron: Asymmetry  1996,  7:  927 ; and references cited therein
  • 4d Tsuge O. Kanemasa S. Yoshioka M. J. Org. Chem.  1988,  53:  1384 
  • 5a Hauser CR. Taylor HM. Ledford TG. J. Am. Chem. Soc.  1960,  82:  1786 
  • 5b Seebach D. Angew. Chem., Int. Ed. Engl.  1969,  8:  639 ; Angew. Chem. 1969, 81, 690
  • 5c Albright JD. Tetrahedron  1983,  39:  3207 
  • 5d Enders D. Kirchhoff J. Gerdes P. Mannes D. Raabe G. Runsink J. Boche G. Marsch M. Ahlbrecht H. Sommer H. Eur. J. Org. Chem.  1998,  63 ; and references cited therein
  • 6a Leete E. Chedekel MP. Boden GB. J. Org. Chem.  1972,  37:  4465 
  • 6b Leete E. J. Org. Chem.  1976,  41:  3438 
  • 6c For asymmetric syntheses of 1,4-dicarbonyl compounds using chiral α-aminonitriles, see: Enders D. Gerdes P. Kipphardt H. Angew. Chem., Int. Ed. Engl.  1990,  29:  179 ; Angew. Chem. 1990, 102, 226
  • 6d See also: Enders D. Mannes D. Raabe G. Synlett  1992,  837 
  • 7 Von Miller W. Plöchl J. Chem. Ber.  1898,  31:  2718 
  • 8a Bodforss S. Chem. Ber.  1931,  64:  1111 
  • 8b See also: Clark RWL. Lapworth A. J. Chem. Soc.  1907,  91:  694 
  • 9 Treibs A. Derra R. Liebigs Ann. Chem.  1954,  589:  176 
  • 11 Chiral bicyclic oxy-cyanopyrrolidines have been used in the asymmetric synthesis of a variety of natural products. For an overview, see: Husson H.-P. Royer J. Chem. Soc. Rev.  1999,  28:  383 
  • See for example:
  • 12a Mitch CH. Tetrahedron Lett.  1988,  29:  6831 
  • 12b Yamada S. Akimoto H. Tetrahedron Lett.  1969,  10:  3105 
  • 13a Hassan NA. Bayer E. Jochims JC. J. Chem. Soc., Perkin Trans. 1  1998,  3747 ; and references cited therein
  • 13b Crossley R. Curran ACW. J. Chem. Soc., Perkin Trans. 1  1974,  2327 
  • The assignment of the relative stereochemistry of the products 5 was either based on X-ray crystallography, NOE measurements or on comparison of 1H chemical shifts with literature data:
  • 17a Yamamoto Y. Komatsu T. Maruyama K. J. Org. Chem.  1985,  50:  3115 
  • 17b Billet M. Klotz P. Mann A. Tetrahedron Lett.  2001,  42:  631 
  • 18 Pal K. Behnke ML. Tong L. Tetrahedron Lett.  1993,  34:  6205 
10

According to Treibs and Derra, the von Miller-Plöchl-synthesis gives good results only for α,N-diaryl-α-aminonitriles; see ref. [8]

14

Under identical conditions, N-benzylaminoacetonitrile does not react with crotonaldehyde. Presumably, the basicity of KHMDS is insufficient in this case.

15

General Procedure for the Preparation of Pyrrolidines 5a-h: To a solution of the α-aminonitrile (2.8 mmol) in THF (27 mL) was added a freshly prepared solution of KHMDS (3.1 mmol, 1.1 equiv) in THF (5 mL) at -78 °C under argon. After 3 min, a solution of the α,β-unsaturated carbonyl compound (3.1 mmol, 1.1 equiv) in THF (5 mL) was added and the mixture was stirred for 30 min. A mixture of EtOH (167 mmol, 60 equiv) and HOAc (17 mmol, 6 equiv) was added and the mixture was warmed to 0 °C. After addition of NaBH3CN (8.5 mmol, 3 equiv), the mixture was stirred at r.t. overnight. The reaction mixture was partitioned between 1 N NaOH and EtOAc, the organic layer was separated and washed with a mixture of brine and 1 N NaOH (9:1). The organic layer was extracted three times with 1 N HCl and the combined aqueous phases were made alkaline by addition of NaOH. Extraction with CH2Cl2, drying over Na2SO4 and evaporation of the solvent in vacuo gave a crude product, which was purified by column chromatography or preparative TLC. Note: Some of the products were too lipophilic for an extraction with aq HCl. They were directly purified by chromatographic methods.

16

Spectroscopic Data of Compound trans -5d: 1H NMR (400 MHz, CDCl3): δ = 7.82-7.86 (m, 3 H), 7.77 (s, br, 1 H,
H-1′), 7.54 (dd, 1 H, J = 8.6 Hz, 1.6 Hz, H-3′), 7.42-7.49 (m, 2 H), 3.32 (d-pseudo-t, 1 H, J t = 9 Hz, J d = 2.9 Hz, H-5a), 2.75 (d, 1 H, J = 8.6 Hz, H-2), 2.42 (pseudo-q, br, 1 H, J = 9 Hz, H-5b), 2.17-2.35 (m, 2 H, H-3, H-4a), 2.18 (s, 3 H, NMe), 1.45-1.54 (m, 1 H, H-4b), 0.99 (d, 3 H, J = 6.7 Hz, 3-CH3). Irradiation at δ = 2.75 ppm (H-2) enhances the signals at δ = 7.77 ppm (H-1′, 3%), 7.54 ppm (H-3′, 1%), 2.42 ppm (H-5b, 1%), 2.18 ppm (NMe, 3%) and 0.99 ppm (3-CH3, 2%). 13C NMR (100.6 MHz, CDCl3): δ = 139.18 (C-2′), 133.39, 133.09 (C-4a′,C-8a′), 128.16, 127.67, 127.63, 126.99, 125.85, 125.69, 125.49 (C-1′, C-3′-C-8′), 80.10 (C-2), 55.65 (C-5), 42.47 (C-3), 40.70 (NMe), 31.24 (C-4), 18.23 (3-CH3). ESI-MS: m/z = 226.2 [M + H]+ (100%). Spectroscopic Data of Compound cis -5d: 1H NMR (400 MHz, CDCl3): δ = 7.79-7.86 (m, 3 H), 7.75 (s, 1 H, H-1′), 7.40-7.50 (m, 3 H), 3.47 (d, 1 H, J = 8.2 Hz, H-2), 3.29 (ddd, 1 H, J = 2.2 Hz, 7.8 Hz, 9.4 Hz, H-5a), 2.50 (m, 1 H, H-3), 2.36 (ddd, 1 H, J = 1.4 Hz, 7.8 Hz, 9.4 Hz, H-5b), 2.30 (s, 3 H, NMe), 2.11-2.20 (m, 1 H, H-4a), 1.52-1.63 (m, 1 H, H-4b), 0.60 (d, 3 H, J = 7.0 Hz, 3-CH3). Irradiation at δ = 3.47 ppm (H-2) enhances the signals at δ = 7.75 ppm (H-1′, 2%), 7.41 ppm (H-3′, 2%), 2.50 (H-3, 3%), 2.36 (H-5b, 1%) and 2.30 (NMe, 2%). 13C NMR (100.6 MHz, CDCl3): δ = 138.20 (C-2′), 133.36, 132.69 (C-4a′, C-8a′), 127.75, 127.58, 127.39, 127.08, 126.79, 125.75, 125.30 (C-1′, C-3′-C-8′), 74.74 (C-2), 56.26 (C-5), 41.29 (NMe), 37.43 (C-3), 32.67 (C-4), 18.77 (3-CH3). ESI-MS: m/z = 226.2 [M + H]+ (100%).