References
1
Helal CJ.
Magriotis PA.
Corey EJ.
J. Am. Chem. Soc.
1996,
118:
10938
2
Trost BM.
Schmidt T.
J. Am. Chem. Soc.
1988,
110:
2301
3a
Huguet J.
Karpf M.
Dreiding AS.
Helv. Chim. Acta
1982,
65:
2413
3b
Sayo N.
Azuma K.
Mikami K.
Nakai T.
Tetrahedron Lett.
1984,
25:
565
4 For the review, see: Ebenezer WJ.
Wight P. In Comprehensive Organic Functional Group Transformations
Vol.
3:
Katritzky AR.
Meth-Cohn O.
Reeds CW.
Pergamon;
Cambridge:
1995.
Chap. 3.05.
p.205-276
5a
Nahm S.
Weinreb SM.
Tetrahedron
Lett.
1981,
22:
3815
5b
Wattanasin S.
Kathawala FG.
Tetrahedron Lett.
1984,
25:
811
5c
Smith WN.
Kuehn ED.
J.
Org. Chem.
1973,
38:
3588
5d
Duranti E.
Balsamini C.
Synthesis
1974,
357
5e
Compagnon P.-L.
Grosjean B.
Lacour M.
Bull.
Soc. Chim. Fr.
1975,
779
6
Tohda Y.
Sonogashira K.
Hagihara N.
Synthesis
1977,
777
7 For the direct reaction of acyl chloride
with cuprous acetylide, see: Castro CE.
Havlin R.
Honwad VK.
Malte A.
Moje S.
J.
Am. Chem. Soc.
1969,
91:
6464
8 For Pd-catalyzed coupling of alkynylstannanes,
see: Logue MW.
Teng K.
J.
Org. Chem.
1982,
47:
2549
9
Kawakami Y.
Katsuki T.
Yamaguchi M.
Tetrahedron Lett.
1983,
24:
5131
10
Stang PJ.
Dixit V.
Synthesis
1985,
962
11a
Fukuyama T.
Lin S.-C.
Li L.
J. Am. Chem. Soc.
1990,
112:
7050
11b
Tokuyama H.
Yokoshima S.
Lin S.-C.
Li L.
Fukuyama T.
Synthesis
2002,
1121
11c
Tokuyama H.
Yokoshima S.
Yamashita T.
Lin S.-C.
Fukuyama T.
J. Braz.
Chem. Soc.
1998,
9:
381
12
Tokuyama H.
Yokoshima S.
Yamashita T.
Fukuyama T.
Tetrahedron Lett.
1998,
39:
3189
13 For a ketone synthesis using thiol
esters, see: Liebeskind LS.
Srogl J.
J. Am. Chem. Soc.
2000,
122:
11260
14a
Kanda Y.
Fukuyama T.
J.
Am. Chem. Soc.
1993,
115:
8451
14b
Fujiwara A.
Kan T.
Fukuyama T.
Synlett
2000,
1667
14c
Evans DA.
Ng HP.
Rieger DL.
J. Am. Chem. Soc.
1993,
115:
11446
14d
Smith AB.
Chen SS.-Y.
Nelson FC.
Reichert JM.
Salvatore BA.
J.
Am. Chem. Soc.
1997,
119:
10935
15
Mori Y.
Seki M.
Heterocycles
2002,
58:
125
16
Typical Procedure :
To a solution of thiol ester 1 (1.00 g, 4.48
mmol), PdCl2 (dppf) (365 mg, 0.448 mmol), CuI (1.45 g,
7.61 mmol), and tri-2-furylphosphine (260 mg, 1.12 mmol) in a mixture
of DMF (7.5 mL) and Et3 N (1.5 mL) was added 1-hexyne
(1.02 mL, 892 mmol) at r.t. After stirring for 3 h at 50 °C,
Celite was added to the mixture and the resulting suspension was
stirred for 5 min. The mixture was diluted with Et2 O
(50 mL) and the reaction was quenched by addition of H2 O
(50 mL). The mixture was filtered through a pad of Celite and separated.
The aqueous layer was extracted with Et2 O (20 mL × 2).
The combined organic extracts were washed with brine (20 mL), dried
over anhyd MgSO4 and concentrated in vacuo. Purification
by flash column chromatography on silica gel (40 g, 5-8% Et2 O/hexanes)
gave 1.03 g (4.21 mmol, 94%) of α,β-alkynyl ketone 2 as a brown oil. Compound 2: IR(film):
2958, 2871, 2214, 1671, 1513, 1247, 1178, 1036, 825 cm-1 . 1 H
NMR (400 MHz, CDCl3 ): δ = 7.11 (d, J = 8.3 Hz,
2 H), 6.82 (d, J = 8.5
Hz, 2 H), 3.78 (s, 3 H), 2.92 (t, J = 6.8
Hz, 2 H), 2.83 (t, J = 7.1
Hz, 2 H), 2.37 (t, J = 6.8
Hz, 2 H), 1.58-1.52 (m, 2 H), 1.46-1.40 (m, 2
H), 0.93 (t, J = 7.3
Hz, 3 H). 13 C NMR (100 MHz, CDCl3 ): δ = 187.1,
158.0, 132.4, 129.2, 113.9, 94.8, 80.8, 55.2, 47.3, 29.7, 29.1,
21.9, 18.6, 13.5. HRMS (FAB): m/z calcd
for C16 H20 O2 : 244.1463. Found:
244.1458.
17 The reaction using trimethylsilylacetylene
gave only recovered starting material 1 .
18
Herold P.
Helv.
Chim. Acta
1988,
71:
354
19
Garner P.
Park JM.
Org.
Synth., Coll. Vol. IX
Wiley;
New
York:
1998.
p.300
20 Since the aryl alkynyl ketone products
are relatively active Michael-acceptors, the ethyl thiolate adducts
were obtained as byproducts. For this reason, the reactions using
those substrates were quenched while some starting material remained
(Figure
[1 ]
).
Figure 1
21 The yield of 2 increased
as the amount of CuI increased. The yields of 2 with
no CuI, 0.5, 1.0, 1.5, 2.0, and 2.5 equiv are 11%, 25%,
33%, 62%, 65%, and 87%, respectively. However,
addition of more than 3.0 equiv of CuI did not improve the yield.