RSS-Feed abonnieren
DOI: 10.1055/s-2003-40989
Cation Radical Imino Diels-AlderReaction: A New Approach for the Synthesis of Tetrahydroquinolines
Publikationsverlauf
Publikationsdatum:
05. August 2003 (online)
Abstract
Cycloaddition of N-arylimines with α-methylstyrenesor 2,3-dihydrofuran was efficiently catalyzed by tris(4-bromophenyl)aminiumhexachloroantimonate (Ar3N + ˙SbCl6 - ) producing tetrahydroquinolinederivatives in excellent yields. The reaction was controlled sensitivelyby the oxidation potentials of the imine and the dienophile.
Key words
cation radical - imines - tetrahydroquinolines - cycloaddition
-
1a
Weinreb SM. In ComprehensiveOrganic Synthesis Vol. 5:Trost BM.Fleming I. Pergamon; Oxford: 1991. p.401 -
1b
Boger DL.Weinreb SM. HeteroDiels-Alder Methodology in Organic Synthesis Academic; San Diego: 1987. Chap.2. -
1c
Boger DL.Weinreb SM. HeteroDiels-Alder Methodology in Organic Synthesis Academic; SanDiego: 1987. Chap. 9. -
1d
Qiang LG.Baine NH. J.Org. Chem. 1988, 53: 4218 -
2a
Povarov LS. Russ. Chem. Rev. 1967, 36: 656 -
2b
Kametani T.Takeda H.Suzuki Y.Honda T. Synth. Commun. 1985, 15: 499 -
2c
Kobayashi S.Ishitani H.Nagayama S. Synthesis 1995, 1195 -
2d
Yamanaka M.Nishida A.Nakagana M. Org.Lett. 2000, 2: 159 -
2e
Hattori K.Yamamoto H. Tetrahedron 1993, 49: 1749 -
2f
Grieco PA.Bahsas A. TetrahedronLett. 1988, 29: 5855 -
2g
Bortototti B.Leardini R.Nanni D.Zanardi G. Tetrahedron 1993, 49: 10157 -
3a
Nagarajan R.Chitra S.Perumal PT. Tetrahedron 2001, 57: 3419 -
3b
Sunderanrajan G.Prabagaran N.Varghese B. Org.Lett. 2001, 3: 1973 -
3c
Collin J.Jaber N.Lannou MI. TetrahedronLett. 2001, 42: 7405 -
3d
Xia C.Heng L.Ma D. TetrahedronLett. 2002, 43: 9405 - 4
Ma Y.Qian C.Xie M.Sun J. J.Org. Chem. 1999, 64: 6462 -
5a
Bauld NL. Tetrahedron 1989, 45: 5307 -
5b
Bauld NL.Bellville DJ.Harirchian B.Lorenz KT.Pabon PA.Reynolds DW.Wirth DD.Chiou H.-S.Marsh BK. Acc.Chem. Res. 1987, 20: 371 -
5c
Schmittel M.Burghart A. Angew. Chem., Int. Ed. Engl. 1997, 36: 2550 -
6a
Behforouz M.Ahmadian M. Tetrahedron 2000, 56: 5259 -
6b
Peglow T.Blechert S.Steckhan E. Chem. Commun. 1999, 433 -
6c
Wiest O.Steckhan E. Angew. Chem., Int. Ed. Engl. 1993, 32: 901 -
6d
Gürtler CF.Blechert S.Steckhan E. Angew. Chem., Int. Ed. Engl. 1995, 34: 1900 -
7a
Zhang W.Jia X.Yang L.Liu Z.-L. TetrahedronLett. 2002, 43: 9433 -
7b
Zhang J.Jin M.-Z.Zhang W.Yang L.Liu Z.-L. TetrahedronLett. 2002, 43: 9687 -
7c
Mao YZ.Jin MZ.Liu Z.-L.Wu LM. Org. Lett. 2000, 2: 741 -
7d
Jin M.-Z.Zhang D.Yang L.Liu Y.-C.Liu Z.-L. TetrahedronLett. 2000, 41: 7357 -
7e
Jin M.-Z.Yang L.Wu L.-M.Liu Y.-C.Liu Z.-L. Chem.Commun. 1998, 2451 - 9
Weinberg NL.Weinberg HR. Chem. Rev. 1968, 68: 449
References
RepresentativeSpectral Data of the Products. syn-3b: Yellow needles, mp 174-176 °C(uncor.). HR-ESI-MS: 379.1211 (calcd for C22H19N2O2Cl + H+:379.1208). 1H NMR (400 MHz, CDCl3): δ = 1.63(s, 3 H, CH3), 1.98 (dd, J = 2.7,13.4 Hz, 1 H, H-3e), 2.24 (dd, J = 11.4,13.4 Hz, 1 H, H-3a), 4.74 (dd, J = 2.7,11.4Hz, 1 H, H-2), 6.61 (d, J = 8.5Hz, 1 H, H-8), 6.67 (d, J = 2.3Hz, 1 H, H-5), 7.0 (dd, J = 2.3,8.5 Hz, 1 H, H-7), 7.22-7.31 (m, 5 H, Ph), 7.62 (d, 2 H, J = 8.7 Hz,Ar), 8.19 (d, 2 H, J = 9.19,Ar). 13C NMR (100.08 MHz, CDCl3): δ = 29.6(CH3), 42.3 (C-4), 48.9 (CH2), 53.8 (CH),116.5 (C-8), 123.8 (C-6), 126.4 (C-5), 127.1 (2 C, Ph), 127.6 (1C, Ph), 128.0 (2 C, Ph), 128.3 (C-7), 129.3 (2 C, Ph), 129.7 (2C, Ph), 132.0 (1 C, Ph), 142.0 (1 C, Ph), 147.5 (1 C, Ph), 148.4(C-10), 150.6 (C-9). anti -3b:Yellow needles, mp 152-153 °C (uncor.).HR-ESI-MS: 379.1210 (calcd. for C22H19N2O2Cl + H+:379.1208). 1H NMR (400 MHz, CDCl3): δ = 1.76(s, 3 H, CH3), 2.08 (dd, J = 12.0,13.1 Hz, 1 H, H-3a), 2.25 (dd, J = 3.0, 13.1, 1 H, H-3e),4.13 (dd, J = 3.0,12.0 Hz, 1 H, H-2), 6.62 (d, J = 8.5 Hz,H-8), 6.81 (dd, J = 7.0,7.0 Hz, H-6), 7.18 (d, J = 2.2Hz, 1 H, H-5), 7.19-7.35 (m, 5 H, Ph), 7.46 (d, J = 7.2 Hz,2 H, Ar), 8.16 (d, J = 7.2Hz, 2 H, Ar). 13C NMR (100.08 MHz, CDCl3): δ = 29.3(CH3), 41.7 (C-4), 47.5 (CH2), 53.9 (CH), 116.1(C-8), 122.4 (C-6), 123.7 (C-5), 126.3 (2 C, Ph), 126.6 (2 C, Ph),127.5 (2 C, Ph), 127.8 (2 C, Ph), 128.1 (C-7), 128.5 (2 C, Ph),142.1 (1 C, Ph), 147.5 (1 C, Ph), 144.6 (C-10), 150.4 (C-9). Thecoupling constants of H-2 suggest its axial conformation in both syn- and anti-3b. The significant low-field shift ofH-3e and up-field shift of H-2 of anti-3b in comparison with those of syn-3b suggestsan axial 4-phenyl group in anti-3b while an equatorial 4-phenyl group in syn-3b. Thestereochemistry was confirmed by their NOESY spectra which showa clear cross peak between the 4-methyl and H-2 in syn-3b, while no such correlation in anti-3b.
10The oxidation peak potential was determinedvs. SCE by cyclic voltammetry in MeCN using a glassy carbon electrode.
11The structures of the products wereidentified by comparing their 1H and 13CNMR data with those reported in the literature. See ref. [4]