RSS-Feed abonnieren
DOI: 10.1055/s-2003-41404
Highly Stereoselective [3+2] Cycloadditions of Nitrile Oxides to Methyl 4-O-Acryloyl-6-deoxy-2,3-O-(t-butyldimethylsilyl)-α-d-glucopyranoside
Publikationsverlauf
Publikationsdatum:
28. August 2003 (online)
Abstract
The [3+2] cycloadditions of benzonitrile oxide or pivalonitrile oxide to methyl 4-O-acryloyl-6-deoxy-2,3-di-O-(t-butyldimethylsilyl)-α-d-glucopyranoside provided the respective adducts, each as virtually a single diastereomer. By reductive removal of the carbohydrate template from each adduct, the respective (R)-enriched Δ2-isoxazoline derivative was obtained.
Key words
asymmetric synthesis - [3+2] cycloadditions - nitrile oxides - d-glucose - chiral auxiliary
-
1a
Cintas P. Tetrahedron 1991, 47: 6079 -
1b
Seyden-Penne J. Chiral Auxiliaries and Ligands in Asymmetric Synthesis Wiley; New York: 1995. -
1c
Kunz H. Angew. Chem., Int. Ed. Engl. 1993, 32: 336 -
1d
Rück K.Kunz H. Chiral Auxiliaries in Cycloadditions Wiley; New York: 1995. -
1e
Hultin PG.Earle MA.Sudharshan M. Tetrahedron 1997, 53: 14823 -
2a
Totani K.Nagatsuka T.Takao K.Ohba S.Tadano K. Org. Lett. 1999, 1: 1447 -
2b
Munakata R.Totani K.Takao K.Tadano K. Synlett 2000, 979 -
2c
Nagatuska T.Yamaguchi S.Totani K.Takao K.Tadano K. Synlett 2001, 481 -
2d
Totani K.Nagatsuka T.Yamaguchi S.Takao K.Ohba S.Tadano K. J. Org. Chem. 2001, 66: 5965 -
2e
Nagatsuka T.Yamaguchi S.Totani K.Takao K.Tadano K. J. Carbohydr. Chem. 2001, 20: 519 -
2f
Totani K.Asano S.Takao K.Tadano K. Synlett 2001, 1772 -
3a For a recent review on [3+2] cycloadditions, see:
Gothelf KV.Jorgensen KA. Chem. Rev. 1998, 98: 863 -
3b For a recent paper on the sugar-based stereoselective [3+2] cycloadditions of nitrile oxide, see:
Desroses M.Chéry F.Tatibouët A.De Lucchi O.Rollin P. Tetrahedron: Asymmetry 2002, 13: 2535 -
4a
Hassner A.Rai KML. Synthesis 1989, 57 -
4b
Rai KML.Hassner A. Indian J. Chem., Sect. B 1997, 36: 242 - 14
Curran DP.Kim BH.Piyasena HP.Loncharich RJ.Houk KN. J. Org. Chem. 1987, 52: 2137 - 15 The new template 9 was prepared from known compound 11 as shown below (Scheme 4). Compound 11 was prepared from tri-O-acetyl-d-glucal according to the reported procedure:
Giuliano RM.Jordan AD.Gauthier AD.Hoogsteen K. J. Org. Chem. 1993, 58: 4979
References and Notes
All new compounds gave spectroscopic data (1H, 13C NMR, IR, and HRMS) in agreement with the structures depicted. Yields refer to purified sample by chromatography on silica gel.
6The [3+2] Cycloaddition of 2 using Benzonitrile Oxide in CH2Cl2; Preparation of Methyl 6-deoxy-4-O-[(5R)-3-phenyl-Δ2-isoxazoline-5-carbonyl]-2,3-di-O-t-butyldimethylsilyl-α-d-glucopyranoside (3
R). To a cooled (0 °C) stirred solution of 2 (211 mg, 0.459 mmol) in CH2Cl2 (4 mL) was added benzonitrile oxide (274 mg, 2.28 mmol). The mixture was stirred at r.t. for 4 h, then diluted with EtOAc (20 mL), and washed with sat. aq NH4Cl (10 mL
× 3). The organic layer was dried over anhyd Na2SO4 and concentrated in vacuo. The residue was purified by column chromatography on silica gel (EtOAc-hexane = 1:40) to give 262 mg (96%) of 3
R as colorless oil. Compound 3
R: TLC, Rf 0.47 (EtOAc-hexane = 1:6); IR(neat): 3100-2800, 1750, 1600 cm-1; 1H NMR (300 MHz, CDCl3) δ: 0.10, 0.11, 0.12 (total 12 H, 3s), 0.85, 0.93 (each 9 H, each s), 1.10 (3 H, d, J = 6.6 Hz), 3.37 (3 H, s), 3.52 (1 H, dd, J = 11.2, 16.8 Hz), 3.67 (1 H, dd, J = 3.7, 9.2 Hz), 3.80 (1 H, dd, J = 6.3, 16.8 Hz), 3.83 (1 H, m), 4.01 (1 H, t, J = 9.2 Hz), 4.62 (1 H, d,
J = 3.7 Hz), 4.74 (1 H, dd, J = 9.2, 9.9 Hz), 5.14 (1 H, dd,
J = 6.3, 11.2 Hz), 7.40-7.70 (5 H, m); 13C NMR (75 MHz, CDCl3) δ: -4.49, -4.39, -3.39, -3.06, 17.32, 17.88, 18.41, 25.87 × 3, 26.12 × 3, 38.00, 54.92, 65.16, 71.62, 74.45, 78.12, 78.58, 100.06, 126.94 × 2, 128.77 × 2, 130.53 × 2, 156.37, 169.40; HRMS: m/z calcd for C28H46NO6Si2 (M+ - OCH3): 548.2864, found 548.2872.
The [3+2] cycloaddition was best achieved in CH2Cl2 (96%). In benzene, the cycloaddition provided 3 R in 92% yield, and the dr of the adducts was 99:1.
8We also conducted the Lewis acid (2 equiv)-mediated cycloaddition of 2 with benzonitrile oxide. The results are as follows: 1) BF3·OEt2/CH2Cl2/-78 °C/6 h (97% recovery of 2), 2) ZnI2/CH2Cl2/-78 °C/6 h (90% recovery of 2), 3) Yb(OTf)3/CH2Cl2/-78 °C/6 h (27% of the adduct, dr = ca 6:1, 47% recovery of 2), 4) MgBr2/CH2Cl2/-78 °C to r.t./6 h (49% of the adduct, dr = ca 7:1, 47% recovery of 2).
9Compound 4 R: TLC, Rf 0.54 (EtOAc-hexane = 1:6); IR(neat): 3100-2800, 1750, 1600 cm-1: 1H NMR (300 MHz, CDCl3) δ: 0.07, 0.09, 0.10 (total 12 H, 3s), 0.83, 0.92 (each 9 H, each s), 1.10 (3 H, d, J = 6.2 Hz), 1.22 (9 H, s), 3.14 (1 H, dd, J = 11.0, 16.9 Hz), 3.36 (3 H, s), 3.38 (1 H, dd, J = 5.9, 16.9 Hz), 3.65 (1 H, dd, J = 3.3, 9.2 Hz), 3.82 (1 H, dq, J = 6.2, 9.2 Hz), 3.98 (1 H, t, J = 9.2 Hz), 4.62 (1 H, d, J = 3.3 Hz), 4.70 (1 H, t, J = 9.2 Hz), 4.94 (1 H, dd, J = 5.9, 11.0 Hz); 13C NMR (75 MHz, CDCl3) δ: -4.49, -4.43, -3.39, -3.06, 17.30, 17.86, 18.42, 25.86 × 3, 26.14 × 3, 28.05 × 3, 32.80, 37.54, 54.92, 65.19, 71.60, 74.45, 77.81, 77.89, 100.06, 165.83, 169.88; HRMS m/z calcd for C26H50NO6Si2 (M+ - OCH3): 528.3177, found 528.3147.
10(a) Compound 5 R: TLC, Rf 0.19 (EtOAc-hexane = 1:1); IR(neat): 3500(br), 3100-2800 cm-1; [a]D 22 -170 (c 1.01, CHCl3); 1H NMR (300 MHz, CDCl3) d 3.28 (1 H, dd, J = 7.9, 16.5 Hz), 3.39 (1 H, dd, J = 10.4, 16.5 Hz), 3.68 (1 H, dd, J = 4.3, 12.2 Hz), 3.87 (1 H, dd, J = 3.1, 12.2 Hz), 4.87 (1 H, dddd, J = 3.1, 4.3, 7.9, 10.4 Hz), 7.37-7.68 (5 H, m); 13C NMR (75 MHz, CDCl3) d: 36.29, 63.63, 81.21, 126.68 × 2, 128.69 × 2, 130.17 × 2, 157.08; HRMS m/z calcd for C10H11NO2 (M+): 177.0790, found 177.0790. (b) Curran and co-workers reported the preparation of 5 R from a 95:5 mixture of the [3+2] cycloaddition of the acryloyl amide of Oppolzer’s chiral sultam with benzonitrile oxide. They obtained the cycloadduct in a dr of 95:5, from which 5 R possessing [a]D 25 -161 (c 1.0, CHCl3) was prepared: Curran, D. P.; Kim, B. H.; Daugherty, J.; Heffner, T. A. Tetrahedron Lett. 1988, 29, 3555. (c) On the other hand, Akiyama and Ozaki reported the preparation of 5 S, which relied on the [3+2] cycloaddition of the acryloyl ester of optically active cyclitol (l-chiro-inositol) with benzonitrile oxide. By this chiral auxiliary-based methodology, they obtained a 95:5 mixture of the cycloadduct. From the major cycloadduct, 5S possessing [a]D 25 +172 (c 1.0, CHCl3) was prepared: Akiyama, T.; Okada, K.; Ozaki, S. Tetrahedron Lett. 1992, 33, 5766.
11Compound 6
R: TLC, Rf 0.45 (EtOAc); IR(neat): 3480 (br), 3100-2800 cm-1: [α]D
22 -120 (c 0.88, CHCl3); 1H NMR (300 MHz, CDCl3) δ 1.21 (9 H, s), 2.88 (1 H, dd, J = 7.4, 16.7 Hz), 3.02 (1 H, dd, J = 10.4, 16.7 Hz), 3.55 (1 H, dd, J = 4.8, 12.0 Hz), 3.76 (1 H, m), 4.67 (1 H, dddd, J = 3.3, 4.8, 7.4, 10.4 Hz); 13C NMR (75 MHz, CDCl3) δ: 3 × 28.03, 33.03, 35.69, 63.76, 80.09, 166.59; HRMS m/z calcd for C8H15NO2 (M+): 157.1103, found 157.1105. Curran and co-workers reported the preparation of both 6
R and 6
S (each er = 95:5; [α]D
25
-127 (c 1.0, CHCl3) for 6
R and [α]D
25 +124 (c 1.0, CHCl3) for 6
S by the chiral auxiliary methodology. Using the same methodology, Akiyama and Ozaki obtained enantioenriched 6
S (dr of the cycloadduct = 91:9) possessing [α]D
20 +121 (c 1.68, CHCl3). See ref.
[10]
Retention times of racemic 7: t R(S) = 17.1 min and t R (R) = 19.7 min (DAICEL Chiralcel OD-H, 2-propanol-hexane = 1:8).
13Retention times of racemic 8: t R (S) = 22.0 min and t R (R) = 25.2 min (DAICEL Chiralcel OJ-H, 2-propanol-hexane = 1:15).
16The dr of the cycloadduct 10 was precisely determined by the chiral HPLC analysis after converting the adduct into the isoxazoline derivative 7.