References
Pioneer works:
1a
Narasaka K.
Soai K.
Mukaiyama T.
Chem. Lett.
1974,
1223
1b
Narasaka K.
Soai K.
Aikawa K.
Mukaiyama T.
Bull. Chem. Soc. Jpn.
1976,
49:
779
Reviews:
2a
Oare DA.
Heathcock CA. In
Topics in Stereochemistry
Vol. 20:
Eliel EL.
Wilen SH.
Wiley;
New York:
1991.
p.124
2b
Lee VJ. In
Comprehensive Organic Synthesis
Vol. 4:
Trost BM.
Fleming I.
Pergamon Press;
Oxford:
1991.
Chap. 1.3.
p.139
3a
Kobayashi S.
Murakami M.
Mukaiyama T.
Chem. Lett.
1985,
953
3b
Heathcock CH.
Norman MH.
Uehling DE.
J. Am. Chem. Soc.
1985,
107:
2797
3c
Sato T.
Wakahara Y.
Otera J.
Nozaki H.
Tetrahedron Lett.
1990,
31:
1581
3d
Grieco PA.
Cooke RJ.
Henry KJ.
VanderRoest JM.
Tetrahedron Lett.
1991,
32:
4665
3e
Kobayashi S.
Hachiya I.
Takahori T.
Araki M.
Ishitani H.
Tetrahedron Lett.
1992,
33:
6815
3f
Kobayashi S.
Hachiya I.
Ishitani H.
Araki M.
Synlett
1993,
472
3g
Ishihara K.
Hanaki N.
Funahashi M.
Miyata M.
Yamamoto H.
Bull. Chem. Soc. Jpn.
1995,
68:
1721
3h
Chen J.
Sakamoto K.
Orita A.
Otera J.
Tetrahedron
1998,
54:
8411
3i
Marx A.
Yamamoto H.
Angew. Chem. Int. Ed.
2000,
39:
178
For Lewis acid-catalyzed asymmetric Michael reactions, see;
4a
Kobayashi S.
Suda S.
Yamada M.
Mukaiyama T.
Chem. Lett.
1994,
97
4b
Bernardi A.
Colombo G.
Scolastico C.
Tetrahedron Lett.
1996,
37:
8921
4c
Kitajima H.
Katsuki T.
Synlett
1997,
568
4d
Evans DA.
Scheidt KA.
Johnston JN.
Willis MC.
J. Am. Chem. Soc.
2001,
123:
4480
5a
RajanBabu TV.
J. Org. Chem.
1984,
49:
2083
5b
Génisson Y.
Gorrichon L.
Tetrahedron Lett.
2000,
41:
4881
5c
Zhang F.-Y.
Corey EJ.
Org. Lett.
2001,
3:
639
6
Mukaiyama T.
Nakagawa T.
Fujisawa H.
Chem. Lett.
2003,
32:
56
7
Miura K.
Nakagawa T.
Hosomi A.
J. Am. Chem. Soc.
2002,
124:
536
8 Propiophenone TMS enolate was much less reactive toward the Michael addition to 2a even in the presence of an equimolar amount of MgCl2 (7% yield of 3aa, 30 °C, 24 h).
9
General Procedure for the MgCl
2
-promoted Michael Addition of DMS Enolates: Under N2 atmosphere, dry DMF (1 mL) was added to MgCl2 (12 mg, 0.13 mmol). The mixture was stirred for 10 min at 30 °C, and a DMS enolate (0.75 mmol) and an α-enone (0.50 mmol) were introduced into the resultant solution. After the reaction was completed, concd HCl (1 mL) was added to the reaction mixture. After being stirred for 5 min, the mixture was neutralized with saturated aqueous NaHCO3 and extracted with EtOAc (3 × 10 mL). The combined organic layer was dried over Na2SO4 and evaporated. The crude product was purified by silica gel column chromatography. Compound anti-3aa: CAN [40794-93-2] (ref.
[10]
). 1H NMR (270 MHz, CDCl3) δ 1.28 (d, J = 6.8 Hz, 3 H), 3.36-3.53 (m, 2 H), 3.89-4.00 (m, 2 H), 7.06-7.27 (m, 5 H), 7.35-7.55 (m, 6 H), 7.83-7.89 (m, 4 H). 13C NMR (68 MHz, CDCl3) δ 14.10 (CH3), 39.87 (CH2), 42.76 (CH), 45.93 (CH), 126.51 (CH), 127.91 (CH × 2), 127.95 (CH × 2), 128.12 (CH × 2), 128.34 (CH × 2), 128.46 (CH × 2), 128.58 (CH × 2), 132.86 (CH), 132.88 (CH), 136.72 (C), 137.07 (C), 142.79 (C), 198.43 (C), 203.23 (C). The signal for the methyl group of the minor isomer appears at 1.01 ppm (d, J = 6.6 Hz). According to the report by Heathcock et al., the major isomer was determined to be anti. See ref.
[11]
Compound anti-3ab: CAN [111873-77-9] (ref.
[12]
). 1H NMR (270 MHz, CDCl3) δ 1.21 (δ, J = 6.9 Hz, 3 H), 2.00 (s, 3 H), 2.89 (d, J = 7.1 Hz, 2 H), 3.72 (q, J = 7.1 Hz, 1 H), 3.83 (quint., J = 6.9 Hz, 1 H), 7.09-7.26 (m, 5 H), 7.38-7.54 (m, 3 H), 7.80-7.83 (m, 2 H). 13C NMR (68 MHz, CDCl3) δ 14.19 (CH3), 30.42 (CH3), 42.71 (CH), 45.08 (CH2), 45.79 (CH), 126.64 (CH), 127.86 (CH × 2), 128.06 (CH × 2), 128.43 (CH × 2), 128.54 (CH × 2), 132.86 (CH), 136.68 (C), 142.54 (C), 203.20 (C), 207.12 (C). Compound anti-3ac: CAN [95741-11-0] (ref.
[13]
). 1H NMR (270 MHz, CDCl3) δ 1.07 (δ, J = 6.4 Hz, 3 H), 1.23 (δ, J = 6.9 Hz, 3 H), 2.17-2.79 (m, 2 H), 3.12 (d, J = 14.5, 2.5 Hz, 1H), 3.62 (qd, J = 6.9, 4.9 Hz, 1 H), 7.37-7.58 (m, 6 H), 7.85-8.06 (m, 4 H). 13C NMR (68 MHz, CDCl3) δ 12.94 (CH3), 18.57 (CH3), 31.91 (CH), 41.24 (CH2), 44.92 (CH), 128.00 (CH × 2), 128.21 (CH × 2), 128.47 (CH × 2), 128.66 (CH × 2), 132.89 (CH), 132.94 (CH), 136.91 (C), 137.05 (C), 199.60 (C), 203.89 (C).
10
Gorrichon-Guigon L.
Maroni-Barnaud Y.
Bull. Soc. Chim. Fr.
1973,
263
11
Oare DA.
Heathcock CH.
J. Org. Chem.
1990,
55:
157
12
Bernardi A.
Dotti P.
Poli G.
Scolastico C.
Tetrahedron
1992,
48:
5597
13
Inokuchi T.
Kurokawa Y.
Kusumoto M.
Tanigawa S.
Takagishi S.
Torii S.
Bull. Chem. Soc. Jpn.
1989,
62:
3739