Subscribe to RSS
DOI: 10.1055/s-2003-41489
Stereoselective Michael-Aldol Tandem Reaction of Diorganyl Diselenides or Diorganyl Disulfides with Conjugate Alkynones Mediated by Samarium Diiodide
Publication History
Publication Date:
08 October 2003 (online)

Abstract
Stereoselective Michael addition and Michael-aldol tandem reaction of diorganyl diselenides and diorganyl disulfides with conjugate alkynones mediated by samarium diiodide were studied. The reaction temperature was a dominating factor for the stereoselectivity. β-Organylselenoalkenones or β-organylthioalkenones and γ-organylselenoallylic alcohols or γ-organylthioallylic alcohols were prepared in good yields.
Key words
stereoselectivity - Michael-aldol tandem reaction - diorganyl diselenides - diorganyl disulfide - conjugate alkynones
-
1a
Bergman ED.Ginsburg D.Pappo R. Org. React. 1959, 10: 179 -
1b
White KB.Reusch W. Tetrahedron 1978, 34: 2439 -
1c
White DA.Baizer MM. Tetrahedron Lett. 1973, 37: 3597 -
1d
Connor R.Fleming CL.Clayton T. J. Am. Chem. Soc. 1936, 58: 1386 -
2a
Posner GH. Chem. Rev. 1986, 86: 831 -
2b
Tietze LF.Beifuss U. Angew. Chem., Int. Ed. Engl. 1993, 32: 131 -
2c
Bunce RA. Tetrahedron 1995, 48: 13103 -
2d
Tietze LF. Chem. Rev. 1996, 96: 115 -
3a
Sibi MP.Lu J. J. Org. Chem. 1997, 62: 5864 -
3b
Fleming I.Sarkar AK. J. Chem. Soc., Chem. Commun. 1986, 1199 -
3c
Tsukada N.Shimida T.Gyoung YS.Asao N.Yamamoto Y. J. Org. Chem. 1995, 60: 143 -
3d
Barrett AGM.Kamimura A. J. Chem. Soc., Chem. Commun. 1995, 1755 -
4a
Huang X.Sun AM. J. Org. Chem. 2000, 65: 6561 -
4b
Wei HX.Kim SH.Caputo TD.Purkiss DW.Li GG. Tetrahedron 2000, 56: 2397 -
5a
Zhang SL.Tian FS. J. Chem. Res., Synop. 2001, 198 -
5b
Zhong WH.Chen XY.Zhang YM. Synth. Commun. 2000, 30: 4451 -
5c
Liu YK.Zhang YM. Synth. Commun. 2000, 30: 4043 -
5d
Liu YK.Zhang YM. Chin. Chem. Lett. 2000, 11: 195 -
5e
Guo HY.Zheng YF.Zhang YM. Chin. J. Chem. 2001, 19: 263 -
5f
Su WK.Li YX.Zhang YM. Chin. J. Chem. 2001, 19: 387 -
5g
Su WK.Li YX.Zhang YM. J. Indian Chem. Soc. 2001, 78: 263 -
5h
Miyashita M.Yoshikashi A. Synthesis 1980, 664 -
5i
Ogawa A.Nishiyama Y.Kambe N.Murai S.Sonoda N. Tetrahedron Lett. 1987, 28: 3271 - 6
Commasseto JV.Ling LW.Petragnani N.Stefani HA. Synthesis 1997, 373 -
7a
Marfat A.McGuirk PR.Elquist P. J. Org. Chem. 1979, 44: 3888 -
7b
Obayashi M.Utimoto K.Nozaki H. Bull. Chem. Soc. Jpn. 1979, 52: 1760 -
7c
Masaki Y.Sakuma K.Kaji K. J. Chem. Soc., Chem. Commun. 1980, 434 - 8
Kamimura A.Mitsudera H.Asano S.Kidera S.Kakehi A. J. Org. Chem. 1999, 64: 6353 - 9
Kamimura A.Mitsudera H.Omata Y.Matsuura K.Shirai M.Kakehi A. Tetrahedron 2002, 58: 9817 - 10
Huang X.Xie MH. Org. Lett. 2002, 4: 1331 - 11
Huang X.Xie MH. J. Org. Chem. 2002, 67: 8895 - 12
Ma SM.Lu XY.Li ZG. J. Org. Chem. 1992, 57: 709 - 13
Deslongchamps P. Stereoelectronic Effects in Organic Chemistry Pergamon; Oxford: 1983. Chap. 7. p.291 - 14
Taniguchi M.Kobayashi S.Nakagawa M.Hino T.Kishi Y. Tetrahedron Lett. 1986, 27: 4763
References
The Michael-aldol tandem reaction products (Z)-2 and (E)-3 were obtained in good yields. All of the products obtained in this study were new and were fully characterized by 1H NMR, 13C NMR, MS, IR, EA spectroscopic methods.
The Representative Procedure of Michael-Aldol Tandem Reaction (Examples: Preparations of 2b and 3b): The reaction was carried out by adding dibutyl disulfides (0.5 mmol) to SmI2 (1.1 mmol) in THF and the mixture was stirred continuously for 2 h at 60 °C. The tolylphenylacetylenic ketone (1 mmol) and isobutyraldehyde (1 mmol) were added in one portion and were reacted at r.t. or -28 °C. After the reaction was complete checked by TLC. Then 0.1 M HCl was added. The reaction mixture was extracted with Et2O (3 × 20 mL), and the mixed organic layer was washed with sat. Na2S2O3 solution (10 mL) and H2O (10 mL). The combined extracts were dried over anhyd Na2SO4. After the solvent was removed by evaporation under reduced pressure, the crude product was purified by preparative TLC on silica gel (eluent: cyclohexane/EtOAc = 8:1). Compound 2b: light yellow oil. IR (KBr): 3450, 3057, 2958, 2929, 2871, 1655, 1604, 1569, 1487, 1465, 1444, 1408, 1380, 1312, 1179, 746, 648, 600 cm-1. 1H NMR (400 MHz, CDCl3): δ = 7.44-7.46 (d, 2 H, J = 8.0 Hz), 7.22-7.28 (d, 2 H, J = 8.0 Hz), 6.93-7.07 (m, 5 H), 4.97 (s, 1 H), 4.22 (s, 1 H), 2.32 (s, 3 H), 2.23-2.28 (t, 2 H), 1.81-1.83 (m, 1 H), 1.39-1.60 (m, 2H), 1.21-1.28 (m, 2 H), 0.97-1.08 (d, 6 H), 0.72-0.80 (t, 3 H). 13C NMR (100 MHz, CDCl3): δ = 200.48, 146.31, 143.19, 140.63, 137.78, 134.85, 130.23, 129.67, 128.63, 128.43, 127.96, 79.88, 33.91, 32.38, 31.85, 21.51, 19.58, 19.09, 13.38. MS: m/z (%) = 382 (0.70) [M+], 381 (2.22) [M+ - 1], 367 (8.44), 366 (26.86), 365 (100.00) [M+ - 17], 339 (20.65), 325 (1.68), 311 (5.45), 293 (4.55), 247 (15.08), 129 (12.58), 119 (86.85), 91 (48.55), 77 (5.78). Anal. Calcd for C24H30O2S: C, 75.35; H, 7.90. Found C, 75.48; H, 7.85%. Compound 3b: light yellow oil. IR (KBr): 3416, 3056, 2957, 2926, 2870, 1658, 1604, 1572, 1487, 1465, 1443, 1408, 1382, 1312, 1294, 1263, 1187, 1074, 1030, 836, 746, 591 cm-1. 1H NMR (400 MHz, CDCl3): δ = 8.04-8.06 (d, 2 H, J = 8.0 Hz), 7.28-7.50 (m, 7 H, J = 8.0 Hz), 4.96 (s, 1 H), 3.98 (s, 1 H), 2.45 (s, 3 H), 2.08-2.12 (t, 2 H), 1.55-1.64 (m, 1 H), 1.28-1.44 (m, 2 H), 1.17-1.19 (m, 2 H), 0.83-1.01 (d, 6 H), 0.64-0.67 (t, 3 H). 13C NMR (100 MHz, CDCl3): δ = 198.03, 143.95, 141.56, 140.16, 136.48, 135.46, 130.26, 129.72, 129.32, 129.11, 128.33, 79.36, 33.25, 31.91, 31.62, 21.97, 19.75, 19.01, 13.32. MS: m/z (%) = 381 (1.66) [M+ - 1], 367 (0.95), 366 (2.31), 365 (8.53) [M+ - 17], 339 (11.49), 295 (2.92), 293 (2.24), 205 (16.32), 119 (100.00), 77 (9.35). Anal. Calcd for C24H30O2S: C, 75.35; H, 7.90. Found C, 75.52; H, 7.73%.