Subscribe to RSS
DOI: 10.1055/s-2003-41502
Asymmetric Intramolecular Allylic Amination: Straightforward Approach to Chiral C1-Substituted Tetrahydroisoquinolines
Publication History
Publication Date:
19 September 2003 (online)
Abstract
Newly introduced Pd-catalyzed asymmetric intramolecular allylic amination provides an easy access to pharmaceutically important 1-substituted tetrahydroisoquinolines. With this amination as the key step, (R)-carnegine was synthesized in an enantioselective manner.
Key words
asymmetric allylic amination - tetrahydroisoquinoline - asymmetric catalysis - palladium - chiral P-N ligand
-
1a
Herbert RB. In The Chemistry and Biology of Isoquinoline AlkaloidsPhilipson JD.Roberts MF.Zenk MH. Springer Verlag; Berlin, Heidelberg, New York, Tokyo: 1985. p.213 -
1b
Bentley KW. In The Isoquinoline Alkaloids Harwood Academic Publishers; Amsterdam: 1998. - 2 For a review, see:
Rozwadowska MD. Heterocycles 1994, 39: 903 -
3a
Brossi A.Focella A.Teitel S. Helv. Chim. Acta 1972, 55: 15 -
3b
Konda M.Shioiri T.Yamada S. Chem. Pharm. Bull. 1975, 23: 1025 -
3c
Piper IM.MacLean DB.Kvarnstrom I.Szarek W. Can. J. Chem. 1983, 61: 2721 -
3d
Czarnocki Z.MacLean DB.Szarek W. Can. J. Chem. 1986, 64: 2205 -
3e
Comins DL.Badawi M. Tetrahedron Lett. 1991, 32: 2995 -
3f
Kawate T.Yamada H.Matsumizu M.Nishida A.Nakagawa M. Synlett 1997, 761 -
3g
Ziólkowski M.Czarnocki Z. Tetrahedron Lett. 2000, 41: 1963 -
4a
Meyers AI.Dickman DA. J. Am. Chem. Soc. 1987, 109: 1263 -
4b
Pyne SG.Dikic S. J. Org. Chem. 1990, 55: 1932 -
4c
Hashigaki K.Kan K.Qais N.Takeuchi Y.Yamato M. Chem. Pharm. Bull. 1991, 39: 1126 -
4d
Meyers AI.Warmus JS.Gonzalez MA.Guiles J.Akahane A. Tetrahedron Lett. 1991, 32: 5509 -
4e
Meyers AI. Tetrahedron 1992, 48: 2589 -
4f
Nakamura M.Hirai A.Nakamura E. J. Am. Chem. Soc. 1996, 118: 8489 -
4g
Okamoto S.Teng X.Fujii S.Takayama Y.Sato F. J. Am. Chem. Soc. 2001, 123: 3462 -
4h
Adam S.Pannecoucke X.Combret J.-C.Quirion J.-C. J. Org. Chem. 2001, 66: 8744 -
5a
Yamada K.Takeda M.Iwakuma T. J. Chem. Soc., Perkin Trans. 1 1983, 265 -
5b
Polniaszek RP.Kaufman CR. J. Am. Chem. Soc. 1989, 111: 4859 -
6a
Pyne SG.Bloem P.Chapman SL.Dixon CE.Griffith R. J. Org. Chem. 1990, 55: 1086 -
6b
Richter-Addo GB.Knight DA.Dewey MA.Arif AM.Gladysz JA. J. Am. Chem. Soc. 1993, 115: 11863 -
6c
Chan E.Lee AWM.Jiang L. Tetrahedron Lett. 1995, 36: 715 -
6d
Wirth T.Fragale G. Synthesis 1998, 162 -
6e
Wünsch B.Nerdinger S. Eur. J. Org. Chem. 1998, 711 -
6f
Itoh T.Nagata K.Miyazaki M.Ohsawa A. Synlett 1999, 1154 -
6g
Pedrosa R.Andrés C.Iglesias JM. J. Org. Chem. 2001, 66: 243 -
6h
Alexakis A.Amiot F. Tetrahedron: Asymmetry 2002, 13: 2117 -
7a
Noyori R.Ohta M.Hsiao Y.Kimura M.Ohta T.Takaya H. J. Am. Chem. Soc. 1986, 108: 7117 -
7b
Kimura M.Hsiao Y.Ohta M.Tsukamoto M.Ohta T.Takaya H.Noyori R. J. Org. Chem. 1994, 59: 297 -
7c
Morimoto T.Achiwa K. Tetrahedron: Asymmetry 1995, 6: 2661 -
7d
Morimoto T.Suzuki N.Achiwa K. Heterocycles 1996, 43: 2557 -
7e
Willoughby CA.Buchwald SL. J. Am. Chem. Soc. 1994, 116: 8952 -
7f
Willoughby CA.Buchwald SL. J. Am. Chem. Soc. 1994, 116: 11703 -
7g
Uematsu N.Fujii A.Hashiguchi S.Ikariya T.Noyori R. J. Am. Chem. Soc. 1996, 118: 4916 -
7h
Kang J.Kim JB.Cho KH.Cho BT. Tetrahedron: Asymmetry 1997, 8: 657 -
7i
Morimoto T.Suzuki N.Achiwa K. Tetrahedron: Asymmetry 1998, 9: 183 -
7j
Mao J.Baker DC. Org. Lett. 1999, 1: 841 - 8
Ukaji Y.Shimizu Y.Kenmoku Y.Ahmed A.Inomata K. Chem. Lett. 1997, 59 -
9a
Hirsenkorn R. Tetrahedron Lett. 1990, 31: 7591 -
9b
Hirsenkorn R. Tetrahedron Lett. 1991, 32: 1775 - For reviews see:
-
10a
Hayashi T. In Catalytic Asymmetric SynthesisOjima I. VCH; Weinheim: 1993. p.325 -
10b
Trost BM.van Vranken DL. Chem. Rev. 1996, 96: 395 -
10c
Johannsen M.Jørgensen KA. Chem. Rev. 1998, 98: 1689 - Example of intramolecular allylic amination:
-
11a
Trost BM.Krische MJ.Radinov R.Zanoni G. J. Am. Chem. Soc. 1996, 118: 6297 -
11b Domino Heck-allylic amination:
Flubacher D.Helmchen G. Tetrahedron Lett. 1999, 40: 3867 -
12a
Ito K.Kashiwagi R.Iwasaki K.Katsuki T. Synlett 1999, 1563 -
12b
Ito K.Kashiwagi R.Hayashi S.Uchida T.Katsuki T. Synlett 2001, 284 -
14a
von Matt P.Pfaltz A. Angew. Chem., Int. Ed. Engl. 1993, 32: 566 -
14b
Sprinz J.Helmchen G. Tetrahedron Lett. 1993, 34: 1769 -
14c
Dawson GJ.Frost CG.Williams JMJJ. Tetrahedron Lett. 1993, 34: 3149 -
14d
Loiseleur O.Meier P.Pfaltz A. Angew. Chem., Int. Ed. Engl. 1996, 35: 200
References
All the compounds in Scheme [2] gave satisfactory 1H NMR (400 MHz) spectra. Compound 1a: δ = 6.73 (dt, J = 1.2 and 11.2 Hz, 1 H), 6.65 (s, 1 H), 6.64 (s, 1 H), 5.81 (dt, J = 6.8 and 11.2 Hz, 1 H), 4.71 (dd, J = 1.2 and 6.8 Hz, 2 H), 3.87 (s, 6 H), 3.52 (dt, J = 6.8 and 6.8 Hz, 2 H), 2.87 (t, J = 6.8 Hz, 2 H), 2.03 (s, 3 H). Compound 1b: δ = 6.95 (br s, 1 H), 6.74 (dt, J = 1.2 and 11.2 Hz, 1 H), 6.65 (s, 1 H), 6.62 (s, 1 H), 5.77 (dt, J = 6.8 and 11.2 Hz, 1 H), 4.73 (dd, J = 1.2 and 6.8 Hz, 2 H), 3.87 (s, 3 H), 3.86 (s, 3 H), 3.53-3.43 (m, 2 H), 2.89 (t, J = 6.8 Hz, 2 H), 1.13 (s, 9 H).
15Typical Experimental Procedure for Allylic Amination: Tris(dibenzylideacetone)dipalladium(0) chloroform adduct (1.9 mg, 1.8 µmol) and ligand 2 (1.5 mg, 3.6 µmol) was placed in a flask under nitrogen and CH2Cl2 (0.36 mL) was added. After being stirred for 30 min at r.t., compound 1b (50 mg, 0.12 mmol) in CH2Cl2 (0.24 mL) and K2CO3 (49.8 mg, 0.36 mmol) was added successively and the mixture was stirred at the temperature for 12 d. The mixture was quenched with H2O and extracted with CH2Cl2. The extract was dried over anhyd MgSO4 and concentrated. Silica gel chromatography of the residue (hexane-EtOAc = 9:1) gave the desired product (33.7 mg, 89%) as an oil. [α]D 23 -157.7 (c 0.38, CHCl3). 1H NMR analysis of the product at 24 °C revealed that it existed as a 78:22 mixture of two rotamers based on the amide function. 1H NMR (400 MHz): δ = 6.64 (s, 0.22 H), 6.61 (s, 0.78 H), 6.60 (s, 0.78 H), 6.56 (s, 0.22 H), 6.06-5.93 (m, 1.78 H), 5.48-5.45 (m, 0.22 H), 5.33-5.29 (m, 1 H), 5.17-5.11 (m, 0.78 H), 5.05 (d, J = 17.2 Hz, 0.22 H), 4.55-4.48 (m, 0.22 H), 4.09-3.98 (m, 0.78 H), 3.87 (s, 3 H), 3.85 (s, 3 H), 3.56 (dt, J = 4.0 and 12.0 Hz, 0.78 H), 3.26 (dt, J = 4.8 and 12.4 Hz, 0.22 H), 3.02-2.92 (m, 1 H), 2.78-2.71 (m, 1 H). Anal. Calcd for C15H16F3NO3: C, 57.14; H, 5.12; N, 4.44. Found: C, 57.02; H, 5.16; N, 4.42. Enantiomeric excess of the product was determined to be 88% by HPLC using a chiral stationary phase column (Daicel Chiralcel OJ-H; hexane:i-PrOH= 9:1).
16A larger scale cyclization of 1b (0.64 mmol scale) afforded 6 with slightly reduced enantioselectivity (85% ee). This compound 6 was used for the following reactions.
17The specific rotation of 7a (98% ee) was [α]D 24 -91.0 (c 2.03, CHCl3) {Lit. R-isomer [3d] [α]D 23 +88.8 (c 2.08, CHCl3)}. Since the enantiomer of 7a has been converted into the enantiomers of (S)-calycotomine and (S)-N-methyl-calycotomine respectively, the synthesis of 7a means that formal total syntheses of those isoquinoline alkaloids have been achieved. [3d]