References
1a
Herbert RB. In The Chemistry and Biology of Isoquinoline Alkaloids
Philipson JD.
Roberts MF.
Zenk MH.
Springer Verlag;
Berlin, Heidelberg, New York, Tokyo:
1985.
p.213
1b
Bentley KW. In The Isoquinoline Alkaloids
Harwood Academic Publishers;
Amsterdam:
1998.
2 For a review, see: Rozwadowska MD.
Heterocycles
1994,
39:
903
3a
Brossi A.
Focella A.
Teitel S.
Helv. Chim. Acta
1972,
55:
15
3b
Konda M.
Shioiri T.
Yamada S.
Chem. Pharm. Bull.
1975,
23:
1025
3c
Piper IM.
MacLean DB.
Kvarnstrom I.
Szarek W.
Can. J. Chem.
1983,
61:
2721
3d
Czarnocki Z.
MacLean DB.
Szarek W.
Can. J. Chem.
1986,
64:
2205
3e
Comins DL.
Badawi M.
Tetrahedron Lett.
1991,
32:
2995
3f
Kawate T.
Yamada H.
Matsumizu M.
Nishida A.
Nakagawa M.
Synlett
1997,
761
3g
Ziólkowski M.
Czarnocki Z.
Tetrahedron Lett.
2000,
41:
1963
4a
Meyers AI.
Dickman DA.
J. Am. Chem. Soc.
1987,
109:
1263
4b
Pyne SG.
Dikic S.
J. Org. Chem.
1990,
55:
1932
4c
Hashigaki K.
Kan K.
Qais N.
Takeuchi Y.
Yamato M.
Chem. Pharm. Bull.
1991,
39:
1126
4d
Meyers AI.
Warmus JS.
Gonzalez MA.
Guiles J.
Akahane A.
Tetrahedron Lett.
1991,
32:
5509
4e
Meyers AI.
Tetrahedron
1992,
48:
2589
4f
Nakamura M.
Hirai A.
Nakamura E.
J. Am. Chem. Soc.
1996,
118:
8489
4g
Okamoto S.
Teng X.
Fujii S.
Takayama Y.
Sato F.
J. Am. Chem. Soc.
2001,
123:
3462
4h
Adam S.
Pannecoucke X.
Combret J.-C.
Quirion J.-C.
J. Org. Chem.
2001,
66:
8744
5a
Yamada K.
Takeda M.
Iwakuma T.
J. Chem. Soc., Perkin Trans. 1
1983,
265
5b
Polniaszek RP.
Kaufman CR.
J. Am. Chem. Soc.
1989,
111:
4859
6a
Pyne SG.
Bloem P.
Chapman SL.
Dixon CE.
Griffith R.
J. Org. Chem.
1990,
55:
1086
6b
Richter-Addo GB.
Knight DA.
Dewey MA.
Arif AM.
Gladysz JA.
J. Am. Chem. Soc.
1993,
115:
11863
6c
Chan E.
Lee AWM.
Jiang L.
Tetrahedron Lett.
1995,
36:
715
6d
Wirth T.
Fragale G.
Synthesis
1998,
162
6e
Wünsch B.
Nerdinger S.
Eur. J. Org. Chem.
1998,
711
6f
Itoh T.
Nagata K.
Miyazaki M.
Ohsawa A.
Synlett
1999,
1154
6g
Pedrosa R.
Andrés C.
Iglesias JM.
J. Org. Chem.
2001,
66:
243
6h
Alexakis A.
Amiot F.
Tetrahedron: Asymmetry
2002,
13:
2117
7a
Noyori R.
Ohta M.
Hsiao Y.
Kimura M.
Ohta T.
Takaya H.
J. Am. Chem. Soc.
1986,
108:
7117
7b
Kimura M.
Hsiao Y.
Ohta M.
Tsukamoto M.
Ohta T.
Takaya H.
Noyori R.
J. Org. Chem.
1994,
59:
297
7c
Morimoto T.
Achiwa K.
Tetrahedron: Asymmetry
1995,
6:
2661
7d
Morimoto T.
Suzuki N.
Achiwa K.
Heterocycles
1996,
43:
2557
7e
Willoughby CA.
Buchwald SL.
J. Am. Chem. Soc.
1994,
116:
8952
7f
Willoughby CA.
Buchwald SL.
J. Am. Chem. Soc.
1994,
116:
11703
7g
Uematsu N.
Fujii A.
Hashiguchi S.
Ikariya T.
Noyori R.
J. Am. Chem. Soc.
1996,
118:
4916
7h
Kang J.
Kim JB.
Cho KH.
Cho BT.
Tetrahedron: Asymmetry
1997,
8:
657
7i
Morimoto T.
Suzuki N.
Achiwa K.
Tetrahedron: Asymmetry
1998,
9:
183
7j
Mao J.
Baker DC.
Org. Lett.
1999,
1:
841
8
Ukaji Y.
Shimizu Y.
Kenmoku Y.
Ahmed A.
Inomata K.
Chem. Lett.
1997,
59
9a
Hirsenkorn R.
Tetrahedron Lett.
1990,
31:
7591
9b
Hirsenkorn R.
Tetrahedron Lett.
1991,
32:
1775
For reviews see:
10a
Hayashi T. In Catalytic Asymmetric Synthesis
Ojima I.
VCH;
Weinheim:
1993.
p.325
10b
Trost BM.
van Vranken DL.
Chem. Rev.
1996,
96:
395
10c
Johannsen M.
Jørgensen KA.
Chem. Rev.
1998,
98:
1689
Example of intramolecular allylic amination:
11a
Trost BM.
Krische MJ.
Radinov R.
Zanoni G.
J. Am. Chem. Soc.
1996,
118:
6297
11b Domino Heck-allylic amination: Flubacher D.
Helmchen G.
Tetrahedron Lett.
1999,
40:
3867
12a
Ito K.
Kashiwagi R.
Iwasaki K.
Katsuki T.
Synlett
1999,
1563
12b
Ito K.
Kashiwagi R.
Hayashi S.
Uchida T.
Katsuki T.
Synlett
2001,
284
13 All the compounds in Scheme
[2]
gave satisfactory 1H NMR (400 MHz) spectra. Compound 1a: δ = 6.73 (dt, J = 1.2 and 11.2 Hz, 1 H), 6.65 (s, 1 H), 6.64 (s, 1 H), 5.81 (dt, J = 6.8 and 11.2 Hz, 1 H), 4.71 (dd, J = 1.2 and 6.8 Hz, 2 H), 3.87 (s, 6 H), 3.52 (dt, J = 6.8 and 6.8 Hz, 2 H), 2.87 (t, J = 6.8 Hz, 2 H), 2.03 (s, 3 H). Compound 1b: δ = 6.95 (br s, 1 H), 6.74 (dt, J = 1.2 and 11.2 Hz, 1 H), 6.65 (s, 1 H), 6.62 (s, 1 H), 5.77 (dt, J = 6.8 and 11.2 Hz, 1 H), 4.73 (dd, J = 1.2 and 6.8 Hz, 2 H), 3.87 (s, 3 H), 3.86 (s, 3 H), 3.53-3.43 (m, 2 H), 2.89 (t, J = 6.8 Hz, 2 H), 1.13 (s, 9 H).
14a
von Matt P.
Pfaltz A.
Angew. Chem., Int. Ed. Engl.
1993,
32:
566
14b
Sprinz J.
Helmchen G.
Tetrahedron Lett.
1993,
34:
1769
14c
Dawson GJ.
Frost CG.
Williams JMJJ.
Tetrahedron Lett.
1993,
34:
3149
14d
Loiseleur O.
Meier P.
Pfaltz A.
Angew. Chem., Int. Ed. Engl.
1996,
35:
200
15
Typical Experimental Procedure for Allylic Amination:
Tris(dibenzylideacetone)dipalladium(0) chloroform adduct (1.9 mg, 1.8 µmol) and ligand 2 (1.5 mg, 3.6 µmol) was placed in a flask under nitrogen and CH2Cl2 (0.36 mL) was added. After being stirred for 30 min at r.t., compound 1b (50 mg, 0.12 mmol) in CH2Cl2 (0.24 mL) and K2CO3 (49.8 mg, 0.36 mmol) was added successively and the mixture was stirred at the temperature for 12 d. The mixture was quenched with H2O and extracted with CH2Cl2. The extract was dried over anhyd MgSO4 and concentrated. Silica gel chromatography of the residue (hexane-EtOAc = 9:1) gave the desired product (33.7 mg, 89%) as an oil. [α]D
23 -157.7 (c 0.38, CHCl3). 1H NMR analysis of the product at 24 °C revealed that it existed as a 78:22 mixture of two rotamers based on the amide function. 1H NMR (400 MHz): δ = 6.64 (s, 0.22 H), 6.61 (s, 0.78 H), 6.60 (s, 0.78 H), 6.56 (s, 0.22 H), 6.06-5.93 (m, 1.78 H), 5.48-5.45 (m, 0.22 H), 5.33-5.29 (m, 1 H), 5.17-5.11 (m, 0.78 H), 5.05 (d, J = 17.2 Hz, 0.22 H), 4.55-4.48 (m, 0.22 H), 4.09-3.98 (m, 0.78 H), 3.87 (s, 3 H), 3.85 (s, 3 H), 3.56 (dt, J = 4.0 and 12.0 Hz, 0.78 H), 3.26 (dt, J = 4.8 and 12.4 Hz, 0.22 H), 3.02-2.92 (m, 1 H), 2.78-2.71 (m, 1 H). Anal. Calcd for C15H16F3NO3: C, 57.14; H, 5.12; N, 4.44. Found: C, 57.02; H, 5.16; N, 4.42. Enantiomeric excess of the product was determined to be 88% by HPLC using a chiral stationary phase column (Daicel Chiralcel OJ-H; hexane:i-PrOH= 9:1).
16 A larger scale cyclization of 1b (0.64 mmol scale) afforded 6 with slightly reduced enantioselectivity (85% ee). This compound 6 was used for the following reactions.
17 The specific rotation of 7a (98% ee) was [α]D
24 -91.0 (c 2.03, CHCl3) {Lit. R-isomer
[3d]
[α]D
23 +88.8 (c 2.08, CHCl3)}. Since the enantiomer of 7a has been converted into the enantiomers of (S)-calycotomine and (S)-N-methyl-calycotomine respectively, the synthesis of 7a means that formal total syntheses of those isoquinoline alkaloids have been achieved.
[3d]