RSS-Feed abonnieren
DOI: 10.1055/s-2003-42054
Rapid and Efficient Methodology to Perform Macrocyclization Reactions in Solid-Phase Peptide Chemistry
Publikationsverlauf
Publikationsdatum:
07. Oktober 2003 (online)
Abstract
Solid-phase peptide synthesis and microwave-assisted organic synthesis have been combined in order to speed up drug discovery process of macrocyclization products in high purity and good yield.
Key words
solid-phase peptide synthesis - macrocyclization - microwave synthesis
-
1a
Strohmeier GA.Kappe O. J. Comb. Chem. 2002, 4: 154 -
1b
Lidstrom P.Tierney J.Wathey B.Westman J. Tetrahedron 2001, 57: 9225 -
1c
Finaru A.Berthault A.Besson T.Guillaumet G.Berteina-Raboin S. Org. Lett. 2002, 4: 2613 -
2a
Lew A.Krutzik PO.Hart ME.Chamberlin AR. J. Comb. Chem. 2002, 4: 95 -
2b
Kappe O. Curr. Opin. Chem. Biol. 2002, 6: 314 -
2c
Coleman CM.MacElroy JMD.Gallagher JF.O’Shea DF. J. Comb. Chem. 2002, 4: 87 -
2d
Larhed M.Hallberg A. Drug Discov. Today 2001, 6: 406 -
3a
Moore ML.Albrightson C.Brickson B.Bryan HG.Calwell N.Callahan JF.Foster J.Kinter LB.Newlander KA.Schmidt DB.Sorenson E.Stassen FL.Yim NCF.Huffman WF. J. Med. Chem. 1988, 31: 1489 -
3b
Barker PL.Bullens S.Bunting S.Burdick JD.Chan KS.Deishe T.Eigenbrot C.Gadek TR.Gantzos R.Lapari MT.Muir CD.Napier MA.Pitti RM.Padua A.Quan C.Stanley M.Struble M.Tom JYK.Burnier JP. J. Med. Chem. 1992, 35: 2040 -
3c
Virgilio AA.Ellman JA. J. Am. Chem. Soc. 1994, 116: 11580 -
3d
Mayer JP.Heil JR.Zhang J.Munson MC. Tetrahedron Lett. 1995, 36: 7387 -
3e
Burgess K.Lim D.Bois-Choussy M.Zhu J. Tetrahedron Lett. 1997, 19: 3345 -
3f
Zhu J. Synlett 1997, 133 -
4a
Fotsch C.Kumaravel G.Sharma SK.Wu AD.Gounarides JS.Nirmale NR.Petter RC. Bioorg. Med. Chem. Lett. 1999, 9: 2125 -
4b
Feng Y.Wang Z.Jin S.Burgess K. J. Am. Chem. Soc. 1998, 120: 10768 -
4c
Goldberg M.Smith L.Tamayo N.Kiselyov AS. Tetrahedron 1999, 55: 13887 -
4d
Kiselyov AS.Smith L.Tempest P. Tetrahedron 1999, 55: 14813 -
4e
Ouyang X.Chen Z.Liu L.Dominguez C.Kiselyov AS. Tetrahedron 2000, 56: 2369 -
4f
Feng Y.Pattarawarapan M.Wang Z.Burgess K. Org. Lett. 1999, 1: 121 -
5a
Yu L.Lai Y.Wade JV.Coutts SM. Tetrahedron Lett. 1998, 39: 6633 -
5b
Mayer JP.Zhang J.Groeger S.Liu C.-F.Jarosinski MA. J. Pept. Res. 1998, 51: 432 -
5c
Jiang L.Burgess K. Tetrahedron 2002, 58: 8743 - 6
Park C.Burgess K. J. Comb. Chem. 2001, 3: 257 - 7
Itoh H.Itoh Y.Rivier J.Lederis K. Am. J. Physiol. 1987, 252: R361 - 8
Atherton E.Sheppard RC. Solid-Phase Peptide Synthesis: A Practical Approach IRL Press; Oxford, UK: 1989. - 9
Grieco P.Gitu P.Hruby VJ. J. Pept. Res. 2001, 57: 250 - 13
Finaru A.Berthault A.Besson T.Guillaumet G.Berteina-Raboin S. Org. Lett. 2002, 4: 2613 - 14
Pyluck A.Yuan R.Galligan E.Primakoff P.Myles DG.Sampson NS. Bioorg. Med. Chem. Lett. 1997, 7: 1053 -
15a
Kiselyov AS.Eisenberg S.Luo Y. Tetrahedron Lett. 1999, 40: 2465 -
15b
Feng Y.Wang Z.Jin S.Burgess K. J. Am. Chem. Soc. 1998, 120: 10768 -
15c
Feng Y.Pattarawarapan M.Wang Z.Burgess K. Org. Lett. 1999, 1: 121 -
15d
Burgess K.Feng Y.Pattarawarapan M.Wang Z. J. Org. Chem. 1999, 64: 9175
References
General Procedure. All experiments were carried out in a Milestone CombiChem Microwave Synthesizer with vessels of 4 mL volume, using DMF as solvent. In all irradiation experiments, rotation of the rotor, irradiation time, temperature, and power were monitored with the ‘easyWAVE’ software package. Temperature was monitored with the aid of an optical fiber inserted into one of the reaction containers. Once 50 °C was reached the reaction mixture was held at this temperature for 10 min and then cooled rapidly to r.t. The reaction vessels were opened and the contents were poured into a separating funnel. The compounds were washed and subjected to the final cleavage from the resin. The crude product was precipitated by anhyd diethyl ether and recovered by filtration. All final products were purified by reverse-phase HPLC carried out on Vydac C-18 column with the following dimensions: 25 × 0.46 cm for analysis and 25 × 2.2 cm for preparative work. Flow rate applied were 1.0 mL/min (C18 column, linear gradient 10-90% MeCN/H2O in 40 min) and 5.0 mL/min for analytical and preparative HPLC, respectively. Analysis of purified products was performed by reverse-phase HPLC, 1H NMR and mass spectroscopy.
11Compound 1: C45H48N8O10S, M.W.: 892.98. MS (ESI, EI+): m/z = 892.7 (M+). HPLC: k’ = 5.85. 1H NMR (500 MHz, DMSO-d 6): δ = 10.48 (s, 1 H), 9.14 (s, 1 H), 8.97 (d, 1 H), 8.29 (d, 1 H), 8.22 (d, 1 H), 8.04 (d, 1 H), 7.86 (s, 1 H), 7.80 (d, 1 H), 7.68 (d, 1 H), 7.58 (m, 2 H), 7.33 (d, 1 H), 7.27-7.16 (m, 6 H), 7.07 (t, 1 H), 6.99 (t, 1 H), 6.88 (d, 2 H), 6.59 (d, 2 H), 4.52 (m, 1 H), 4.46 (m, 1 H), 4.43 (m, 1 H), 4.28 (m, 1 H), 3.83 (m, 1 H), 3.41 (m, 1 H), 3.30 (m, 2 H), 3.13 (dd, 1 H), 2.99 (q, 1 H), 2.92 (dd, 1 H), 2.79 (m, 1 H), 2.63 (m, 2 H), 1.56 (m, 2 H), 1.48 (m, 1 H), 1.34 (q, 1 H), 1.23 (m, 1 H), 1.06 (m, 1 H). Compound 2: C45H55N9O10, M.W.: 918.00. MS (ESI, EI+): m/z = 918.2 (M+). HPLC: k’ = 5.93. 1H NMR (500 MHz, DMSO-d 6): δ = 10.87 (s, 1 H), 9.35 (s, 1 H), 8.91 (d, 1 H) 8.38 (d, 1 H), 8.18 (d, 1 H), 8.01 (d, 1 H), 7.57 (m, 2 H), 7.47 (d, 1 H), 7.22-7.16 (m, 3 H), 7.15-7.04 (m, 5 H), 7.00 (m, 1 H), 6.98 (t, 1 H), 6.76 (d, 2 H), 6.65 (d, 2 H), 4.38 (m, 1 H), 4.31 (m, 1 H), 4.22-4.18 (m, 3 H), 3.23 (m, 2 H), 3.16 (m, 1 H), 3.10 (m, 1 H), 2.95 (m, 1 H), 2.84 (m, 1 H), 2.67 (m, 1 H), 2.62-2.59 (m, 3 H), 1.70 (m, 1 H), 1.56-1.53 (m, 2 H), 1.46-1.44 (m, 3 H), 1.37-1.36 (m, 4 H), 1.16-1.12 (m, 3 H), 1.06-1.03 (m, 1 H). Compound 3: C45H49N9O9S, M.W.: 891.99. MS (ESI, EI+): m/z = 891.3 (M+). HPLC: k’ = 5.78. Compound 4: C48H56N10O9, M.W.: 917.02. MS (ESI, EI+): m/z = 917.4 (M+). HPLC: k’ = 5.88.
12All reactions were performed on a scale of 100 mg of beads (0.7 mmol/g) allowing the isolation of at least 10 mg of crude product.