References
1
Greenhill JV.
Lue P. In Amidines and Guanidines in Medicinal Chemistry. Progress in Medicinal Chemistry
Vol. 30:
Ellis GP.
Luscombe DK.
Elsevier;
Amsterdam:
1993.
p.203
2
Usui H.
Watanabe Y.
Kanao M.
J. Heterocycl. Chem.
1993,
30:
551
3a
Granik VG.
Russ. Chem. Rev.
1983,
52:
377
3b
Boyd GV. In Recent Advances in the Synthesis of Amidines, The Chemistry of Amidines and Imidates
Patai S.
Rappoport Z.
John Wiley and Sons;
Chichester:
1991.
p.339
4a From microbial broth of Pseudomonas fluorescens: Hida T.
Tsubotani S.
Funabashi Y.
Ono H.
Harada S.
Bull. Chem. Soc. Jpn.
1993,
66:
863
4b From Niembergia hippomanica: Buschi CA.
Pomilio AB.
Phytochemistry
1987,
26:
863
4c From Brunfelsia grandiflora D: Lloyd HA.
Fales HM.
Goldman ME.
Jerina DM.
Plowman T.
Schultes RE.
Tetrahedron Lett.
1985,
26:
2623
4d From Streptomyces distallicus: Arcamone F.
Orezzi PG.
Barbieri W.
Nicolella V.
Penco S.
Gazz. Chim. Ital.
1967,
97:
1097
4e
Oxley P.
Short WF.
J. Chem. Soc.
1946,
147
4f Streptomyces spp.: Nakamura S.
Karasawa K.
Yonehara H.
Tanaka N.
Um H.
J. Antibiot. Ser. A
1961,
14:
103
4g From Indigofera spicata: Hegarty MP.
Pound AW.
Nature (London)
1968,
217:
354
4h Peck RL, Schafer HM, and Wolf FJ. inventors; US Pat. 2804463. From microbial broth of Nocardia Formica, beta-(5-imino-2-pyrrolidine-carboxamido)-propanamidine:
4i Peck RL, Schafer HM, and Wolf FJ. inventors; US Appl. Pat. 594267. Also see:
5
Grivas JC.
Taurins A.
Can. J. Chem., Rev. Can. Chim.
1961,
39:
761
6a
Pinner A.
Chem. Ber.
1885,
18:
2845
6b
Stilz HU.
Jablonka B.
Just M.
Knolle J.
Paulus EF.
Zoller G.
J. Med. Chem.
1996,
39:
2118
7
Schnur RC.
J. Org. Chem.
1979,
44:
3726
8a Alkali metal salts: Passet BV.
Voropaev TI.
Kalashni NA.
Kulbitsk GN.
Zh. Org. Khim.
1972,
8:
1246
8b Aluminium amides: Garigipati RS.
Tetrahedron Lett.
1990,
31:
1969
8c Ammonium alkyl or aryl sulfonates: Charlton PT.
Maliphant GK.
Oxley P.
Peak DA.
J. Chem. Soc.
1951,
485 ; ref. 4e
8d Lewis acids (AlCl3, ZnCl2) at 150-200 °C: Oxley P.
Partridge MW.
Short WF.
J. Chem. Soc.
1947,
1110
8e Cu(I)Cl: Rousselet G.
Capdevielle P.
Maumy M.
Tetrahedron Lett.
1993,
34:
6395
8f FeCl3 and alkyl halides: Fuks R.
Tetrahedron
1973,
29:
2147
8g Triethyloxonium tetrafluoroborate: Lambert C.
Merenyi R.
Caillaux B.
Viehe HG.
Bull. Soc. Chim. Belg.
1978,
94:
457
9 Lanthanide(III) triflates: Forsberg JH.
Spaziano VT.
Balasubramanian TM.
Liu GC.
Kinsley SA.
Duckworth CA.
Poteruca JJ.
Brown PS.
Miller JL.
J. Org. Chem.
1987,
52:
1017
10 SmI2: Xu F.
Sun JH.
Shen Q.
Tetrahedron Lett.
2002,
43:
1867
PCl5, POCl3 and SOCl2:
11a
Partridge MW.
Smith A.
J. Chem. Soc., Perkin Trans. 1
1973,
5:
453
11b
Bredereck H.
Gompper R.
Klemm K.
Rempfer H.
Chem. Ber.-Recueil
1959,
92:
837
12 Tetrakis(dimethylamino)titanium: Wilson JD.
Wager JS.
Weingarten H.
J. Org. Chem.
1971,
36:
1613
13
Dunn PJ. In Amidines and N-Substituted Amidines, Comprehensive Organic Functional Groups Transformations
Vol. 5.:
Katritzky AR.
Meth-Cohn O.
Rees CW.
Elsevier;
Amsterdam:
1995.
p.751
14
Newbery G.
Webster W.
J. Chem. Soc.
1947,
738
15a
Collado IG.
Hanson JR.
Macías-Sánchez AJ.
Tetrahedron
1996,
52:
7961
15b Collado IG, Hanson JR, and Macías-Sánchez A. inventors; J. Span. Pat. ES 2154185.
; Chem. Abstr. 2001, 135, 195688
15c Collado I. G., Hanson J. R., Macías-Sánchez A.; Span. Pat. Appl. ES 1998-2241, 1998
16
Collado IG.
Hernández-Galán R.
Durán-Patrón R.
Cantoral JM.
Phytochemistry
1995,
38:
647
17
Hanson JR.
Pure Appl. Chem.
1981,
53:
1155
18a
Rebordinos L.
Cantoral JM.
Victoria-Prieto M.
Hanson JR.
Collado IG.
Phytochemistry
1996,
42:
383
18b
Collado IG.
Hernandez-Galán R.
Victoria-Prieto M.
Hanson JR.
Rebordinos L.
Phytochemistry
1996,
41:
513
19
Collado IG.
Hanson JR.
Macías-Sánchez AJ.
Mobbs D.
J. Nat. Prod.
1998,
61:
1348
Excess of nucleophiles:
20a
Möller F. In Methoden der Organischen Chemie (Houben- Weyl)
Vol. 11/1, 4th ed.:
Müller E.
Thieme Verlag;
Stuttgart:
1957.
p.311
20b
Mousseron M.
Jullien J.
Jolchine Y.
Bull. Soc. Chim. Fr.
1952,
757
20c
Deyrup JA.
Moyer CL.
J. Org. Chem.
1969,
34:
175
20d
Crooks PA.
Szyndler R.
Chem. Ind. (London)
1973,
1111
21 Metal amides and Lewis acids: Cossy J.
Bellosta V.
Hamoir C.
Desmurs J.-R.
Tetrahedron Lett.
2002,
43:
7083 ; and references cited therein
Lewis acids with poorly nucleophilic counter-anions:
22a Ph4SbOTf: Fujiwara M.
Imada M.
Baba A.
Matsuda H.
Tetrahedron Lett.
1989,
30:
739
22b Yb(OTf)3: Meguro M.
Asao N.
Yamamoto Y.
J. Chem. Soc., Perkin Trans.1
1994,
2597
22c
Hou X.-L.
Wu J.
Dai L.-X.
Xia L.-J.
Tang M.-H.
Tetrahedron: Asymmetry
1998,
9:
1747
22d Ln(OTf)3: Chini M.
Crotti P.
Favero L.
Macchia F.
Pineschi M.
Tetrahedron Lett.
1994,
35:
433
22e LiOTf: Auge J.
Leroy F.
Tetrahedron Lett.
1996,
37:
7715
23
Sekar G.
Singh VK.
J. Org. Chem.
1999,
64:
287
24 Typical Experimental Procedure: To a magnetically stirred solution of caryophyllene oxide (2) (450 mg, 2.045 mmol) and aniline (4a) (353 mg, 8.18 mmol) in anhyd MeCN (8 mL), Sn(OTf)2 (351 mg, 0.51 mmol) was added and the reaction mixture was heated to 80 °C. After 24 h., once compound 2 was consumed (TLC), the solvent was evaporated under reduced pressure and the crude reaction mixture was purified by column chromatography on silica gel to yield the amidine 6a (340 mg, 47%) and the amine 7a (36 mg, 5%).
25 Selected physical data for compound 6a: [α]D +16.6 (c 9.2 mg/mL, MeOH). Selected physical and spectroscopic data for compound 6b: [α]D -3.2 (c 43.3 mg/mL, MeOH). 1H NMR (400 MHz, CD3OD): δ = 0.86 (s, 3 H, H3-15′), 0.89 (s, 3 H, H3-13′α), 1.01 (s, 3 H, H3-14′β), 1.20 (d, J
12
′
a-12
′
b = 11.0 Hz, 1 H, H-12′a), 1.42 (d, J
12
′
b-12
′
a = 11.0 Hz, 1 H, H-12′b), 1.62 (dd, J
3
′
α
-
2
′
α = 6.6 Hz, J
3
′
α
-
3
′
β = 11.4 Hz, 1 H, H-3′α), 1.70 (t, J
3
′
β
-
2
′
α = J
3
′
β
-
3
′
α = 11.4 Hz, 1 H, H-3′β), 1.94 (m, 1 H, H-10′b), 2.04 (s, 3 H, H3-2), 3.16 (br s, 1 H, H-9′β), 3.72 (s, 3 H, H3-1′′′), 4.04 (dd, J
2
′
α
-3
′
β = 11.40 Hz, J
2
′
α
-3
′
α = 6.6 Hz, 1 H, H-2′α), 6.92 (d, J
3
′′
-
2
′′ = J
5
′′
-
6
′′ = 9.0 Hz, 2 H, H-3′′, H-5′′), 7.19 (d, J
2
′′
-
3
′′ = J
6
′′
-
5
′′ = 9.0 Hz, 2 H, H-2′′, H-6′′). 13C NMR (100 MHz, CD3OD): δ = 18.60 (c, C-2), 21.56 (t, C-6′), 24.62 (c, C-13′), 26.54 (t, C-10′), 28.79 (t, C-11′), 29.01 (c, C-15′), 30.91 (c, C-14′), 33.92 (t, C-7′), 36.01 (s, C-8′), 36.62 (t, C-12′), 39.07 (s, C-4′), 45.29 (t, C-3′), 47.03 (s, C-1′), 51.91 (d, C-5′), 56.07 (c, C-1′′′), 61.97 (d, C-2′), 75.13 (d, C-9′), 115.92 (2C, d, C-3′′, C-5′′), 128.65 (s, C-1′′), 129.50 (2C, d, C-2′′, C-6′′), 161.34 (s, C-4′′), 165.71 (s, C-1). MS (EI):
m/z (rel. int.) = 384 (87) [M+], 369 (22) [M - 15]+, 325 (41), 262 (33). Compound 6c: [α]D +12.9 (c 20 mg/mL, MeOH). 1H NMR (400 MHz, CD3OD): δ 0.92 (s, 3 H, H3-15′), 0.94 (s, 3 H, H3-13′α), 1.05 (s, 3 H, H3-14′β), 1.74 (m, 1 H, H-12′b), 1.77 (s, 3 H, H3-2), 2.00 (m, 1 H, H-10′b), 3.22 (br s, 1 H, H-9′β), 4.29 (m, 1 H, H-2′α), 6.70 (d, J
2
′′
-3
′′ = J
6
′′
-5
′′ = 8.4 Hz, 2 H, H-2′′, H-6′′), 7.33 (d, J
3
′′
-2
′′ = J
5
′′
-
6
′′ = 8.4 Hz, 2 H, H-3′′, H-5′′). 13C NMR (100 MHz, CD3OD): δ = 18.08 (c, C-2), 21.76 (t, C-6′), 25.02 (c, C-13′), 26.79 (t, C-10′), 29.04 (t, C-11′), 29.18 (c, C-15′), 31.31 (c, C-14′), 34.46 (t, C-7′), 35.93 (s, C-8′), 37.19 (t, C-12′), 38.40 (s, C-4′), 45.74 (t, C-3′), 46.68 (s, C-1′), 52.11 (d, C-5′), 59.40 (d, C-2′), 75.78 (d, C-9′), 115.64 (s, C-4′′), 126.18 (d, 2 C, C-2′′, C-6′′), 132.63 (d, C-3′′, C-5′′), 152.51 (s, C-1′′), 159.51 (s, C-1). MS (EI):
m/z (rel. int.) = 434(48) [M + 2]+, 432 (47) (M+), 375 (23), 373 (22), 353 (41) [M - 79]+, 292 (27), 262(46). Compound 6d: [α]D +98.4 (c = 17 mg/mL, MeOH). 1H NMR (400 MHz, CD3OD): δ = 0.96 (s, 3 H, H3-15′), 1.00 (s, 3 H, H3-13′), 1.14 (s, 3 H, H3-14′), 1.86 (2 H, H-3′α, H-3′α), 2.08 (m, 1 H, H-10′b), 2.59 (m, 3 H, H3-2), 3.25 (sa, 1 H, H-9′β), 4.02 (dd, J
2
′
α
-3
′
β = 11.1 Hz, J
2
′
α
-3
′
α = 6.3 Hz, 1 H, H-2′α), 7.40 (t, J
4
′′
-3
′′ = J
4
′′
-
5
′′ = 5.0 Hz, 1 H, H-4′′), 8.81 (d, J
3
′′
-
4
′′ = J
5
′′
-
4
′′ = 5.0 Hz, 2 H, H-3′′, H-5′′). 13C NMR (100 MHz, CD3OD): δ = 17.81 (c, C-2), 21.60 (t, C-6′), 24.77 (c, C-13′), 26.64 (t, C-10′), 28.89 (c, C-15′), 29.01 (t, C-11′), 30.91 (c, C-14′), 33.83 (t, C-7′), 36.03 (s, C-8′), 36.46 (t, C-12′), 39.49 (s, C-4′), 46.34 (t, C-3′), 46.61 (s, C-1′), 51.87 (d, C-5′), 65.85 (d, C-2′), 75.14 (d, C-9′), 119.82 (d, C-4′′), 159.16 (s, C-1′′), 159.69 (d, 2 C, C-3′′, C-5′′), 165.96 (s, C-1). HMBC cross peaks (selected): C-1 → H-2′α, H3-2. MS (EI):
m/z (rel. int.) = 357 (27) [M + 1]+, 339 (40) [M + 1 - 18]+, 263(24)
26
Herman H.
Tezuka Y.
Kikuchi T.
Supriyatna S.
Chem. Pharm,. Bull.
1994,
42:
138
27 Selected physical and spectroscopic data for compound 8: [α]D +14.0 (c 2.2 mg/mL, MeOH). 1H NMR (400 MHz, CDCl3): δ = 0.92 (s, 3 H, H3-13′α), 0.95 (s, 3 H, H3-15′), 1.06 (s, 3 H, H3-14′β), 1.66 (dd, J = 10.8, 11.6 Hz, 1 H, H-3′β), 1.76 (m, 1 H, H-11′b), 1.77 (s, 3 H, H3-2), 2.00 (m, 1 H, H-10′b), 3.24 (s, 3 H, H3-1′′′), 3.31 (br s,1 H, H-9′β), 3.46 (dd, J = 6.0, 10.8 Hz, 1 H, H-2′α), 7.08 (d, J = 7.6 Hz, 2 H, H-2′′, H-6′′), 7.17 (t, J = 7.6 Hz, 1 H, H-4′′), 7.32 (d, J = 7.6 Hz, 2 H, H-3′′, H-5′′). 13C NMR (75 MHz, CDCl3): δ = 15.06 (q, C-2), 21.02 (t, C-6′), 25.51 (q, C-13′α), 26.45 (t, C-10′), 28.12 (t, C-11′), 28.50 (q, C-15′), 31.38 (q, C-14′β), 33.45 (t, C-7′), 34.95 (s, C-8′*), 36.76 (t, C-12′), 38.62 (s, C-1′*), 39.67 (q, C-1′′′), 46.09 (s, C-4′*), 47.46 (t, C-3′), 50.75 (d, C-5′), 67.55 (d, C-2′), 75.41 (d, C-9′), 125.41 (d, C-4′′), 126.75 (d, 2 C, C-2′′, C-6′′), 129.15 (d, 2 C, C-3′′, C-5′′), 147.17 (s, C-1′′), 156.02 (s, C-1). HMBC cross peaks(selected): C-1 → H3-1′′′, H-2′α, H3-2; C-1′′ → H3-1′′′, H-3′′, H-5′′. MS (EI):
m/z (rel. int.) = 368 [M]+(10), 353 [M - 15]+(5), 262 (20).
28
Gautier JA.
Miocque M.
Fauran C.
Lecloare AY.
Bull. Soc. Chim. Fr.
1971,
2:
478
29 When a less hindered epoxide is prepared on the caryophyllane skeleton, normal opening products are observed: Collado IG.
Hanson JR.
Hitchcock PB.
Macías-Sánchez AJ.
J. Org. Chem.
1997,
62:
1965